CHAPTER 8

Mechanics of Options

Introduction

This chapter is an introduction to methods used in dealing @gtionalityin financial instru-
ments. Compared to most existing textbooks, the present text adopts a different way of looking
at options. We discuss options from the point of view of an options market maker. In our setting,
options arenotpresented as instruments to bet on or hedge againdirtetionof an underlying

risk. Instead, options are motivated as instrumenisottility.

In the traditional textbook approach, options are introducedigctional instruments.

This is not how market professionals think of options. In most textbooks, a call option becomes
in-the-money and hence profitable if the underlying price increases, indirectly associating it
with a bullish view. The treatment of put options is similar. Puts are seen as appropriate for an
investor who thinks the price of the underlying asset is going to decrease. For an end investor
or retail client, suchdirectional motivatiorfor options may be natural. But, looking at options

this way is misleading if we are concerned with the interbank or interdealer market. In fact,
motivating options as directional tools will disguise the fundamental aspect of these instru-
ments, namely that options are tools for tradiadatility. The intuition behind these two views

of options is quite different, and we would like the reader to think like an option trader or
market maker.

This chapter intends to show that an option exposure, when fully put in place, is an impure
position on the way volatility is expected to change. A market maker with éongtposition
in options is someone who is “expecting” the volatility itcrease A market maker who is
shortthe option is someone who thinks that the volatility of the underlying is going to decrease.
Sometimes such positions are taken as funding vehicles.

In this sense, a trader’s way of looking at puts and calls is in complete contrast to the
directional view of options. For example, market makers look at European calls and puts as
if they wereidentical objects. As we will see in this chapter, from an optioarket makes
point of view, there is really no difference between buying a call or buying a put. Both of
these transactions, in the end, result in the same payoff. Consider Figure 8-1, where we show
two possible intraday trajectories of an underlying priSe, In one case prices are falling
rapidly, while in the other, prices are rising. An option trader will sell puts or calls with the same
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FIGURE 8-1

ease. As we will see, the trader may be concerned with whether he siefloldouyany options,
rather tharwhichtype of option to sell.

In this chapter and the next, we intend to clarify the connection between volatility and option
prices. However, we first review some basics.

What Is an Option?

From a market practitioner’s point of view, options are instruments of volatilitgt#il investor
who owns a call on an assef;, may feel that a persistent upward movement in the price of
this asset is “good” for him or her. But, a market maker who may be long in the same call may
prefer that the underlying pricg, oscillateas much as possible, aftenas possible. The more
frequently and violently prices oscillate, the mdoag (short) positions in option books will
gain (lose), regardless of whether calls or puts are owned.

The following reading is a good example as to how option traders look at options.

EXAMPLE:

Wall Street firms are gearing up to recommend long single-stock vol positions on compa-
nies about to report earnings. While earnings seasons often offer opportunities for going
long vol via buying Calls or Puts, this season should present plenty of opportunities to
benefit from long vol positions given overall negative investor sentiment. Worse-than-
expected earnings releases from one company can send shockwaves through the entire
market.
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The big potential profit from these trades is from gamma, in other words, large moves in
the underlying, rather than changes in implied vol. One promisingenamannounced

in mid-February that manufacturing process and control issues have led to reduced sales
of certain products inthe U.S., which it expected to influence its first quarter and full-year
sales and earnings. On Friday, options maturing in August had a mid-market implied
vol of around 43%, which implies a 2.75% move in the stock per trading day. Over the
last month, the stock has been moving on average 3% a day, which means that by buying
options on the company, you're getting vol cheap. (Derivatives Week, April 1, 2001)

This reading illustrates several important characteristics of options. First, we clearly see that
puts and calls are considered as similar instruments by market practitioners. The issue is not to
buy puts or calls, but whether or not to buy them.

Second, and this is related to the first point, notice that market participants are concerned
with volatilities and not with the direction of prices—referring to volatility simply \as.

Market professionals are interested in the difference betwetral daily volatilities of stock

prices and the volatilitiegmplied by the options. The last sentence in the reading is a good
(but potentially misleading) example of this. The reading suggests that ojtiphga daily
volatility of 2.75%, while theactualdaily volatility of the stock price is 3%. According to this,
options are considered “cheap,” since the actual underlying moves more than what the option
price implies on a given dayThis distinction between implied volatility and “actual volatility”
should be kept in mind.

Finally, the reading seems to refer to two different types of gains from volatility. One,
from “large movements in the underlying price,” leadsggmmma gainsand the other, from
implied volatility, leads tovega gainsDuring this particular episode, market professionals were
expecting implied volatility to remain the same, while the underlying assets exhibited sizable
fluctuations. It is difficult, at the outset, to understand this difference. The present chapter will
clarify these notions and reconcile the market professional’s view of options with the directional
approach the reader may have been exposed to Earlier.

Options: Definition and Notation

Option contracts are generally divided into the categorigglah vanilla andexotic options
although many of the options that used to be known as exotic are vanilla instruments today. In
discussing options, it is good practice to start with a simple benchmark model, understand the
basics of options, and then extend the approach to more complicated instruments. This simple
benchmark will be a plain vanilla option treated within the framework of Beck-Scholes
model.

The buyer of an option does not buy the underlying instrument; he or she bigist.alf
this right can be exercised only at the expiration date, then the optBurdcpean If it can be

1 This analysis should be interpreted carefully. In the option literature, there are many different measures of volatility.
As this chapter will show, it is perfectly reasonable that the two values be different, and this may not necessarily imply
an arbitrage possibility.

2 The previous example also illustrates a technical point concerning volatility calculations in practice. Consider
the waydaily volatility was calculated oncannualizedpercentage volatility was given. Suppose there are 246 trading
days in a year. Then, note that an annual percentage volatility of 43% is not divided by 246. Instead, it is divided by the
square rootof 246 to obtain the “daily” 2.75% volatility. This is known #se square root ruleand has to do with the
role played by Wiener processes in modeling stock price dynamics. Wiener process incrementsdnareethat is
proportional to the time that has elapsed. Hence, the standard deviation or volatility will be proportional to the square
root of the elapsed time.
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exercised any time during the specified period, the option is said Aorierican A Bermudan
option is “in between,” given that it can be exercised at more than one of the dates during the
life of the option.

In the case of a European plain vanilla call, the option holder has purchased the right to
“buy” the underlying instrument at a certain price, called strike or exercise price, at a spe-
cific date, called thexpirationdate. In the case of the European plain vanilla put, the option
holder has again purchased the rightto an action. The action in this case is to “sell” the underlying
instrument at the strike price and at the expiration date.

American style options can be exercised anytime until expiration and hence may be more
expensive. They may carry an early exercise premium. At the expiration date, options cease to
exist. In this chapter, we discuss basic properties of options using mostly plain vanilla calls.
Obviously, the treatment of puts would be similar.

3.1. Notation

We denote the strike prices by the symlbo] and the expiration date ld§. The price or value

of the underlying instrument will be denoted By if it is a cash product, and by; if the
underlying is a forward or futures price. The fair price of the call at ttmell be denoted by
C(t), and the price of the put b¥(¢).2 These prices depend on the variables and parameters
underlying the contract. We us® as the underlying, and write the corresponding call option
pricing functionas

C(t) = C(Ss, tlr, K,0,T) (@)

Here,o is the volatility of S; andr is the spot interest rate, assumed to be constant. In more
compact form, this formula can be expressed as

C(t) = C(S,1) )

This function is assumed to have the following partial derivatives:

oC(Sy,t)
e =0 @)
02C(S;,t)
875,52 =Css (4)
oC(Sy,t)
o @ ©)

More is known on the properties of these partials. Everything else being the s&lriacifeases,
the call option price(’(¢), also increases. 1§, declines, the price declines. But the changes in
C'(¢t) will never exceed those in the underlying assgt,Hence, we should have

0<Cs<1 (6)
3 The way we characterize and handle the time index is somewhat different from the treatment up to this chapter.

Option prices are not written &% and P, as the notation of previous chapters may suggest. Instead, we use the notation
C(t) andP(t). The former notation will be reserved for the partial derivative of an option’s price with respect to time
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Atthe same time, everything else being the sameiraseases, the life of the option gets shorter
and the time-value declines,

C, <0 (7)

Finally, the expiration payoff of the call (put) option is a convex function, and we expect the
C' (S, t) to be convex as well. This means that

0 < Clys 8)

This information about the partial derivatives is assumed to be known even when the exact form
of C'(Sy, t) itself is not known.

The notation in Equation (1) suggests that the partials themselves are functi$ins,at,

t, T, and o. Hence, one may envisage some further, higher-order partials. The traditional
Black-Scholesanilla option pricing environment uses the partidl€’s, Css, C:} only. Further

partial derivatives are brought into the picture as the Black-Scholes assumptions are relaxed
gradually.

Figure 8-2 shows the expiration date payoffs of plain vanilla put and call options. In the
same figure we have the timget < T value of the calls and puts. These values trace a smooth
convex curve obtained from the Black-Scholes formula.

We now consider a real-life application of these concepts. The following example looks
at Microsoft optiongraded at the Chicago Board of Options Exchange, and discusses various
parameters within this context.

Call value Along call

Callvalue att \

Time value

\ntrinsic value

° S
K Sty
Put value
A\ong put
Time-t value

Expiration
value P(S,, 1)

FIGURE 8-2
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EXAMPLE:

Suppose Microsoft (MSFT) is “currently” trading at 61.15 at Nasdaq. Further, the
overnight rate is 2.7%. We have the following quotes from the Chicago Board of Options
Exchange (CBOE).

In the table, the first column gives the expiration date and the strike level of the option.
The exact time of expiration is the third Friday of every month. These equity options in
CBOE are of American style. The bid price is the price at which the market maker is
willing to buy this option from the client, whereas the ask price is the price at which he
or she is willing to sell it to the client.

Calls Bid Ask Volume
Nov 55.00 7.1 7.4 78
Nov 60.00 3.4 3.7 6291
Nov 65.00 1.2 1.3 1456
Nov 70.00 0.3 0.4 98
Dec 55.00 8.4 8.7 0
Dec 60.00 5 5.3 29
Dec 65.00 2.65 2.75 83
Dec 70.00 1.2 1.25 284
Puts Bid Ask Volume
Nov 55.00 0.9 1.05 202
Nov 60.00 2.3 2.55 5984
Nov 65.00 5 53 64
Nov 70.00 9 9.3 20
Dec 55.00 2.05 2.35 10
Dec 60.00 3.8 4.1 76
Dec 65.00 6.3 6.6 10
Dec 70.00 9.8 10.1 25

Note: October 24, 2002, 11:02 A.M. data from CBOE.

CBOE option prices are multiplied b§100 and then invoiced. Of course, there are
some additional costs to buying and selling options due to commissions and possibly
other expenses. The last column of the table indicates the trading volume of the relevant
contract.

For example, consider the November 55 put. This option will be in-the-money, if the
Microsoft stock is below 55.00. If it stays so until the third Friday of November 2001,
the option will have a positive payoff at expiration.

100 such puts will cost

1.05 x 100 x 100 = $10,500 (9)
plus commissions to buy, and can be sold at

0.90 x 100 x 100 = $9,000 (10)

if sold at the bid price. Note that the bid-ask spread for one “lot” had a valugl&00
that day.

We now study option mechanics more closely and introduce further terminology.
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On Retail Use of Options

Consider aetail clientand anoption market makeas the two sides of the transaction. Suppose
a business uses the commodityas a production input, and would like to “cap” the prigge at

a future datél". For this insurance, the business takdsray position using call options oAf;.

The call option premium is denoted I6y(¢). By buying the call, the client makes sure that he
or she can buy one unit of the underlying ahaximunprice K, at expiration daté". If at time

T, St is lower thanK, the client will not exercise the option. There is no need to fsagollars

for something that is selling for less in the marketplace. The option will be exercised ¢fly if
equals or exceeds attimeT'.

Looked at this way, options are somewhat similar to stangedranceagainst potential
increases in commodities prices. In such a framework, options can be motivatieectional
instruments. One has the impression that an increaSgigtharmful for the client, and that the
call “protects” against this risk. The situation for puts is symmetrical. Puts appear to provide
protection against the risk of undesirable “declines’Sin In both cases, a certain direction in
the change of the underlying pri¢g is associated with the call or put, and these appear to be
fundamentally different instruments.

Figure 8-3 illustrates these ideas graphically. The upper part shows the payoff diagram for
a call option. Initially, at timely, the underlying price is a$;,. Note thatS;, < K, and the
option isout-of-the-moneyObviously, this does not mean that the right to buy the asset at time
T for K dollars has no value. In fact, fromdient’s point of view S; may moveup during
intervalt € [to, T] and end up exceeding by timeT'. This will make the optioin-the-money
It would then be profitable to exercise the option and buy the underlying at afori€ae option
payoff will be the differenc& — K, if S exceedds. This payoff can be shown either on the
horizontal axis or, more explicitly, on the vertical a%i$hus, looked at from theetail client’s
point of view, even at the price levél,, the out-of-the money option is valuable, sincendy
become in-the-money later. Often, the directional motivation of options is based on these kinds
of arguments.

If the option expires at = K, the option will beat-the-moneyATM) and the option holder
may or may not choose to receive the underlying. However, as the costs associated with delivery
of the call underlying are, in generééssthan the transaction costs of buying the underlying in
the open market, some holders of ATM options prefer to exercise.

Hence, we get the typical price diagram for a plain vanilla European call option. The option
price fort € [tog, T] is shown in Figure 8-3 as a smooth convex curve that converges to the
piecewise linear option payoff as expiration tifieapproaches. The vertical distance between
the payoff line and the horizontal axis is calledrinsic value The vertical distance between
the option price curve and the expiration payoff is calledtiime valueof the option. Note that
for a fixedt, the time value appears to be at a maximum when the option is at-the-money—that
is to say, wherb,; = K.

Some Intriguing Properties of the Diagram

Consider pointA in the top part of Figure 8-3. Here, at timgthe option isdeepout-of-the
money. TheS; is close to the origin and the time value is close to zero. The tangent at point
A has a positive slope that is little different from zero. The curve is almost “linear” and the
secondlerivative is also close to zero. This means that for small changgs the slope of the
tangent will not vary much.

4 As usual, the upward-sloping line in Figure 8-3 has slope +1, and thus “reflects” the prefit, K on the
horizontal axis, toward the vertical axis.
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Now, consider the case represented by péinh Figure 8-3. Here, at timg the option is
deep in-the-moneys, is significantly higher than the strike price. However, the time value is
againclose to zero. The curve approaches the payoff line and hence has a slope eldse to
Yet, the second derivative of the curve is once again very close to zero. This again means that
for small changes ii$;, the slope of the tangent will not vary mugh.

The third case is shown as poifitin the lower part of Figure 8-3. Suppose the option was
at-the-money at time¢, as shown by poin€'. The value of the option is entirely made of time
value. Also, the slope of the tangent is close to 0.5. Finally, it is interesting thautiature
of the option is highest at poirt and that if.S; changes a little, the slope of the tangent will
changesignificantly

This brings us to an interesting point. The more convex the curve is at a point, the higher
the associated time value seems to be. In the two extreme cases where the slope of the curve is
diametrically different, namely at point4 and B, the option has amalltime value. At both

5 That is, it will stay close to 1.
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points, thesecondderivative of the curve is small. When the curvature reaches its maximum,

the time value is greatest. The question, of course, is whether or not this is a coincidence.
Pursuing this connection betwetme valueandcurvaturefurther will lead us to valuing

the underlying volatility. Suppose, by holding an option, a market maker can somehow generate

“cash” earnings as; oscillates. Could it be that, everything else being the same, the greater the

curvature ofC'(t), the greater the cash earnings are? Our task in the next section is to show that

this is indeed the case.

Options as Volatility Instruments

In this section we see how convexity is translated into cash earningS, ascillates and
creates time valuThe discussion is conducted in a higlsiynplifiedenvironment to facilitate
understanding of the relationship between volatility and cash gains (losses) of long (short)
option positions.

Consider amarket makewho quotes two-way prices for a European vanilla call option
C(t), with strike K, and expiratiori’, written on a nondividend paying asset, denotedshy
Let the risk-free interest rate be constant. For simplicity, consider an at-the-money option,
K = S;. In the following, we first show the initial steps taken by the market maker who buys
an option. Then, we show how the market maker hedges this position dynamically, and earns
some cash due t8; oscillations.

Initial Position and the Hedge

Suppose this market makieuysa call option from a clien?. The initial position of the market
maker is shown in the top portion of Figure 8-4. It is a standand call position. The market
maker is not an investor or speculator, and this option is bought with the purpose of keeping it
on the books and then selling it to another client. Hence, some mechanical procedures should
be followed. First, the market maker need$fundthis position. Second, he or she shonétige

the associated risks.

We start with the first requirement. Unlike the end investor, market makers never have
“money” of their own. The trade needs to famded.There are at least two ways of doing this.

One is toshortan appropriate asset in order to generate the needed funds, while the other is
to borrow these funds directly from the money market deSkippose the second possibility is
selected and the market maker borraig) dollars from the money market desk at an interest
rater, = r. Thenetposition that puts together the option and the borrowed funds is shown in
the bottom part of Figure 8-4.

Now, consider the risks of the position. Itis clear from Figure 8-4 that the long call posi- tion
funded by a money market loan is similar to going long shelf S; decreases, the position’s
value will decrease, and a market maker who takes such positions many times on a given day
cannot afford this. The market maker must hedge this risk by taking another position that will
offset these possible gains or losses. Wisgrdeclines, ashort position in S; gains. AsS;

6 It is important to emphasize that this way of considering options is from an interbank point of view. For end
investors, options can still be interpreted as directional investments, but the pricing and hedging of options can only be
understood when looked at from the dealer’s point of view. The next chapter will present applications related to classical
uses of options.

7 Remember that market makers have the obligation to buy and sell at the prices they are quoting.
8 This means that the client has “hit” the bid price quoted by the market maker.

9 The market maker may also wait for some other client to show up and buy the option back. Market makers have
position limits and can operate for short periods without closing open positions.
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changes byAS;, a short position will change by AS;. Thus, we might think of using this short
position as a hedge.

But there is a potential problem. The long call position is describedduws whereas the
short position inS; is represented by kne. This means that the response<4ft) and.S;, to
a change ir5;, are not going to be identical. Everything else being the same, if the underlying
changes byAS;, the change in the option price will @proximately’

AC(t) = O,AS,, (11)

The change in the short position on the other hand will equ&l;. In fact, the net response of
the portfolio

Vi = {long C(t), short S;} (12)

10 Due to the assumption of everything else being the sameMfieand AC/(t) should be interpreted within the
context of partial differentiation.
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to a small change i8;, will be given by thefirst-orderapproximation,

AV, =2 C,AS; — AS, (13)
= (Cs —1)AS; <0 (14)

due to the conditio) < C < 1. This position is shown in Figure 8-5. It &ill a risky posi-
tion and, interestingly, the risks are reversed. The market maker will now lose monesif the
increases. In fact, this position amounts to a long put financed by a money market loan.

How can the risks associated with the movements;ibe eliminated? In fact, consider
Figure 8-4. We can approximate the option value by using the tangent at§)cinfC. This
would also be a line. We can then adjust the short position accordingly. According to
equation (14), short-sellingne unit of S; overdid the hedge. Figure 8-4 suggests that the
market maker should shait units of Sy, selecting thé, according to

dC(S,,1)
hy=—"2=(C 15
t 8 St s ( )
+1 Long ATM call
Slope = +1
Downside risk Funded ATM call
/ >
‘/; St
| Short S,
Short 1 futures
St
_ Slope = -1
...\s a short ATM put

N /S\ope =-1

\k&

— Downside risk

FIGURE 8-5
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To see why this might work, consider the new portfolig,
V; = {long 1 unit of C(t), borrow C(t) dollars, short Cs units of S} (16)

If S; changes byAS;, everything else being the same, the change in this portfolio’s value will
be approximately

AV, 2 [C(Sy + AS, t) — C(Si, t)] — CsAS, a7)

We can use a first-order Taylor series approximatio@¢s; + AS;,t), around pointS;, to

simplify this relationshipt

0C (S, t)
9S;

Here,R is theremainder The right-hand side of this formula can be substituted in equation (17)
to obtain

C(S; + ASy,t) = C(S, t) + AS,+ R (18)

AV, = chgi’t) AS, + R| — C,AS, (19)
After using the definition
808(2,15) _c. (20)
and simplifying, this becomes
AV, 2R (21)

That is to say, this portfolio’s sensitivity toward changesSinwill be the remainder term,
R. It is related to Ito’s Lemma, shown in Appendix 8-2. The biggest term in the remainder is
given by

18°C(Si,t)

2
3o (A8 (22)

Since the second partial derivative@ft) is always positive, the portfolio’s value will always
be positivelyaffected by small changes i#}. This is shown in the bottom part of Figure 8-6.
A portfolio such as this one is said to Helta-neutral That is to say, theelta exposurerepre-
sented by the first-order sensitivity of the position to changes jifis zero. Notice that during
this discussion the time variable was treated as a constant.

This way of constructing a hedge for options is caltkdta hedgingand theh, is called
the hedge ratio. It is important to realize that the procedure will need constant updating of the
hedge ratioh,, as time passes aiff] changes. After all, the idea depends on a first-order Taylor
series approximation of a nonlinear instrument using a linear instrument. Yet, Taylor series
approximations artocal and they are satisfactory only for a reasonable neighborhood around
the initial S;. As S; changes, the approximation needs to be adjusted. Consider Figure 8-7.
When S; moves from pointA to point B, the approximation a#l deteriorates and a new
approximation is needed. This new approximation will be the tangent at point

11 Let f(z) be a continuous and infinitely differentiable functionzofThe kth order Taylor series approximation
of f(x), at pointzo, is given by

£(&) = Flwo) + £ (@) = w0) + 3 [ (20) (& = 20)* ++ - ++ - fH(wo0) (@ — 0)*

wheref* (z() is thekth derivative off(.) evaluated at = (.
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4.2. Adjusting the Hedge over Time

We now consider what happens to tteltahedged position as; oscillates. According to
our discussion in the previous chapter, as time passes, the replicating portfolio needs to be
rebalanced. This rebalancing will generate cash gains.

We discuss these portfolio adjustments in a highly simplified environment. Considering a
sequence of simple oscillations $ aroundan initial pointS;, = S°, let

to<ti <--- <ty (23)
with
ti—tio1=A (24)

denote successive time periods that are afannits of time. We assume that oscillates at
an annual percentage rate of one standard deviaticaroundthe initial pointS,, = S°. For
example, one possible round turn may be

5% 5 (SO + AS) — SO (25)
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With AS = ¢5°/A, the percentage oscillations will be proportionalta\. The mechan-
ics of maintaining thedelta-hedged long call position will be discussed in this simplified
setting.

SinceS;, moves between three possible values only, we simplify the notation and denote
the possible values &f; by S—, S°, andS*, wheré?

St =8+ AS (26)
S~ =8"-AS 27)
We now show how these oscillations generate cash gains. According to Figure 8;7|us

tuates, the slop&’s, of the C(S;, t) also changes. Ignoring the effect of time, the slope will
change, say, betweert", C?, andC;, as shown in Figure 8- We note that

Cc; <C<cf (28)

for all t;. This means that aS; moves,h,, the hedge ratio will change in a particular way. In
order to keep the portfolideltahedged, the market maker needsatjustthe number of the
underlyingsS, that was shorted.

12 We can represent this trajectory by a three-siéaekov chainthat has the following probabilities:
1 1
P(S°Isty=1 P(S7|8°%) = 3 P(ST|8%) = 3 P(S°IS7) =1

where S is the sorting value. If prices are att or S~ theyalwaysgo back toSy. From S, they can either go up
or down.

13 Jtis important to realize that these slopes also depend ontiathough, to simplify the notation, we are omitting
the time index here.
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Second, and unexpectedly, the hedge adjustments have a “nice” effect. Symeoves
from S* to S or from S° to S—, the market maker has tiecreasehe size of the short position
in S;. To do this, the market maker needs to “buy” back a portion of the underlying asset that
was originally shorted at a higher prié& or S*.

Accordingly, the market maker sells short when prices are high, and covers part of the
position when prices decline. This leads to cash gains

Consider now what happens when the move is f&$hto S*. The new slope(', is steeper
than the oldC?. This means that the market maker needs to shoreof the S;-asset at the
new price. When the5; moves back taS?, these shorts are covered &it, which is lower
thanS.

Thus, asS; oscillates around?, the portfolio is adjusted accordingly, and the market maker
would automaticallysell high and buy low. At everyound turn say, {S°, S+, S°}, which
takestwo periods, the hedge adjustments will generate a cash gain equal to

(CF=CII(S* +A8) - 8% = (CF = CHAS (29)

Here, the(C'F — C?) represents the number 8f-assets that were shorted after the price moved
from S° to S*. Once the price godsackto S°, the same securities are purchased at a lower
price. Itis interesting to look at these trading gains as the time intekydlecomes smaller and
smaller.

4.2.1. Limiting Form

As AS — 0, we can show an important approximation to the trading (hedging) gains
(CF - C)AS (30)

The term(C — C?) is thechangein thefirst partial derivative olC (S, t), assS; moves from
Sy, to a new level denoted by, + AS. We can convert théC — C?) into arate of change
after multiplying and dividing byA S
cf-cv
AS
As we letAS go to zero, we obtain the approximation
cr-cY _ 0*°C(Sy,t)
AS 087

(CF —COAS = (AS)? (31)

(32)

Thus, theround-turn gains fromdeltahedge adjustments shown in equation (29) can be
approximated as

2
t
(€ - chag= LB (n g 33)
0S;
Pertime unit gains are then half of this,
1 0%C(Sy,t) 9
58785@5) (34)

These gains are only part of the potential cash inflows and outflows faced by the market maker.
The position has further potential cash flows that need to be described. This is done in the next
two sections.
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Other Cash Flows

We just showed that oscillations #} generate positive cash flows if the market mattelta-

hedges his or her long option position. Does this imply an arbitrage opportunity? After all, the
market maker did not advance any cash yet seems to receive cash spontaneously as long as
S; oscillates. The answer is no. There aweststo this strategy, and theelta-hedged option
position isnotriskless.

1. The market maker funded his or her position with borrowed money. This means, that, as
time passes, ainterest costs incurred. For a period of length, this cost will equal
rCA (35)

under the constant spot rate assumption. (We wiite), asC.)
2. The option hatime valug and as time passes, everything else being the same, the value
of the option will decline at theate

~0C(8,t)
Cr=—3, (36)
The option value will go down by
0C (S, t)
TA (37)

dollars, for each\ that passes.
3. Finally, the cash received from the short position generatgs, A dollars interest every
time periodA.

The trading gains and the costs can be put together to obtain an impzattat differential
equation(PDE), which plays a central role in financial engineering.

Option Gains and Losses as a PDE

We now add all gains and costs per unit of tileeThe options’ gains per time unit from hedging
adjustments is
1 9?C (S, t)
27 987

In case the proces is geometrigthe annual percentage variance will be constant and this can
be written as (see Appendix 8-2)

(AS)? (38)

1
5Cus0’SPA (39)

The rest of the argument will continue with the assumption of a constant
Interest is paid daily on the funds borrowed to purchase the call. For every period of
lengthA, a long call holder will pay

rCA (40)
Another item is the interest earned from cash generated by shéitingits of S;:14

TCS StA (41)

14 If the underlying asset is not “cash” but a futures contract, then this item may drop.
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Adding these, we obtain the net cash gains (losses) from the hedged long call position
during A:
% 402 S2A 4+ rC S, A — rCA (42)
Now, in order for there to be no arbitrage opportunity, this must be equal to the daily loss of
time value:
1
5033025% +1rCy S A —rCA = —CL A (43)
We can eliminate the commaf terms, and obtain a very important relationship that some
readers will recognize as tliddack-Scholes partial differential equation
1
5033025}2 +7rCsS; —rC+Cr =0 (44)
Every PDE comes with some boundary conditions, and this is no exception. The call option
will expire at timeT’, and the expiratiod' (Sp, T') is given by

C(St,T) = max[St — K, 0] (45)

Solving this PDE gives the Black-Scholes equation. In most finance texts, the PDE derived
here is obtained from some mathematical derivation. In this section, we obtained the same PDE
heuristically from practical trading and arbitrage arguments.

Cash Flows at Expiration

The cash flows at expiration date have three components: (1) the market maker has to pay the
original loan if it is not paid off slowly over the life of the option, (2) there is the final option
settlement, and (3) there is the final payoff from the slsppposition.

Now, at an infinitesimally short time periodt;, before expiration, the price of the underlying
will be very close taSz. Call it S;.. The price curveC'(S,, t) will be very near the piecewise
linear option payoff. Thus, the hedge ratig = C; will be very close to either zero, or one:

1S5 >K
hT‘{o Sy < K (46)

This means that, at tini€, any potential gains from the long call option position will be equal
to losses on the shoff; position.

The interesting question is, how does the market maker manage to pay back the original loan
under these conditions? There is only one way. The only cash thatis available is the accumulation
of (net) trading gains from hedge adjustments dufing@]. As long as equation (44) is satisfied
for everyt;, the hedged long option position will generate enough cash to pay back the loan.
The option price(’(t), regarded this way is the discounted sum of all gains and losses from a
deltarhedged option position the trader will incur basedeapecteds;-volatility.

We will now consider a numerical example to our highly simplified discussion of how
realized volatility is converted into cash via an option position.

An Example

Consider a stockS,, trading at a price of 100. The stock pays no dividends and is known to
have a Black-Scholes volatility of = 45% per annum. The risk-free interest rate is 4% and the
St is known to follow a geometric process, so that the Black-Scholes assumptions are satisfied.



220 CHAPTER 8. Mechanics of Options

Amarket maker buys 100 plain vanilla, at-the-money calls that expire in 5 days. The premium
for one call is 2.13 dollars. This is the price found by plugging the above data into the Black-
Scholes formula. Hence, the total cash outla§283. There are no other fees or commissions.
The market maker borrows tH$213, buys the call options, and immediately hedges the long
position by short selling an appropriate number of the underlying stock.

EXAMPLE:
Suppose that during these 5 days the underlying stock follows the path:
{Day 1 =100, Day 2 = 105, Day 3 = 100, Day 4 = 105, Day 5 = 100}  (47)

What are the cash flows, gains, and losses generated by this call option that remain on
the market maker’s books?

1. Day 1: The purchase date
Current Delta: 51 (Found by differentiating the Black-Scholes formula with
respect taS;, plugging in the data and then multiplying by 100.)
Cash paid for the call options$213
Amount borrowed to pay for the call$213
Amount generated by short selling 51 units of the st86k00. This amount
is deposited at a rate af%.
2. Day 2: Price goesto 105
Current Delta: 89 (Evaluated at; = 105, 3 days to expiration)
Interest on amount borrowed13(.04)(z55) = $.02
Interest earned from deposii100(.04)(555) = $.57 (Assuming no bid-ask
difference in interest rates.)
Short selling 38 units of additional stock to reach delta-neutrality which gen-
erate:38(105) = $3990.
3. Day 3: Price goes back to 100
Current Delta: 51
Interest on amount borrowed13(.04)(z55) = $.02
Interest earned from deposit§3100 + 3990)(.04)(555) = $1.
Short covering 38 units of additional stock at 100 each, to reach delta neutrality
generates a cash flow d88(5) = $190. Interest on these profits is ignored
to the first order of approximation.
4. Day 4: Price goesto 105
Current Delta: 98
Interest on amount borrowe@13(.04)(545) = $.02

36
Interest earned from deposits100(.04) (%) = $.57

Shorting 47 units of additional stock at31685 each, to reach delta neutrality
generates#7(105) = $4935.

5. Day 5: Expiration with Sr = 100
Net cash generated from covering the short positibi{5) = $235 (There
were 98 shorts, covered @100 each. 47 shorts were sold &t05, 51 shorts
at $100)
Interest on amount borrowed13(.04)(545) = $.02
Interest earned from deposit§3100 + 4935)(.04)(5¢5) = $1.1. The option
expires at-the-money and generates no extra cash.

6. Totals
Total interest paid4(.02) = $.08
Total interest earned2(.57) + 1 + 1.1 = $3.24
Total cash earned from hedging adjustmeS&35 + $190.
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Cash needed to repay the lo&#213

Total net profit ignoring interest on interest $215.16.

A more exact calculation would take into account interest on interest earned
and the interest earned on ti§&90 for 2 days.

We can explain why total profit is positive. The path followed%yin this example implies
a daily actual volatility of5%. Yet, the option was sold at an annual implied volatility46f%,
which corresponds to a “daily” percentage implied volatility of:

1
Ab\ [ ——= = 2. 48
0.45 365 36% (48)

Hence, during the life of the option, th& fluctuated more than what the implied volatility
suggested. As a result, the long convexity position had a net profit.

This example is, of course, highly simplified. It keeps implied volatility constant and the
oscillations occur around a fixed point. If these assumptions are relaxed, the calculations will
change.

4.6.1. Some Caveats

Three assumptions simplified notation and discussion in this section.

o First, we considered oscillations arounthxadS°. In real life, oscillations will clearly
occur around points that themselves move. As this happens, the partial deriv@atives,
andC,, will change in more complicated ways.

e Second(; andC, are also functions of timg and as time passes, this will be another
source of change.

e The third point is more important. During the discussion, oscillations were kept constant
atAS. Inreal life, volatility may change over time and be random as well. This would
notinvalidate the essence of our argument concerning gains from hedge adjustments, but
it will clearly introduceanother riskthat the market maker may have to hedge against.
This risk is known asegarisk.

e Finally, it should be remembered that the underlying asset did not make any payouts
during the life of the option. If dividends or coupons are paid, the calculation of cash
gains and losses needs to be adjusted accordingly.

These assumptions were made to emphasize the role of options as volatility instruments. Forth-
coming chapters will deal with how to relax them.

Tools for Options

The Black-Scholes PDE can be exploited to obtain the major tools available to an option trader
or market maker. First of these is tBeack-Scholes formuljavhich gives the arbitrage-free price
of a plain vanilla call (put) option under specific assumptions.

The second set of tools is made up of the “Greeks.” These measure the sensitivity of an
option’s price with respect to changes in various market parameters. The Greeks are essential in
hedging and risk managing options books. They are also used in pricing and in options strategies.

The third set of tools are ad hoc modifications of these theoretical constructs by market
practitioners. These modifications adapt the theoretical tools to the real world, making them
more “realistic.”
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5.1. Solving the Fundamental PDE

The convexity of option payoffs implies an arbitrage argument, namely that the expected net
gains (losses) frons; oscillations are equal to time decay during the same period. This leads to
the Black-Scholes PDE:

1
5055025,52 +rCyS; —rC+C, =0 (49)

with the boundary condition
C(T) = max[St — K, 0] (50)

Now, under some conditions partial differential equations can be solved analytically and a
closed-form formul@an be obtained. See Duffie (2001). In our case, with specific assumptions
concerning the dynamics ¢f;, this PDE has such a closed-form solution. This solution is the
market benchmark known as the Black-Scholes formula.

5.2. Black-Scholes Formula

An introduction to the Black-Scholes formula first requires a good understanding of the under-
lying assumptions. Suppose we consider a plain vanilla call option written on a stock at time
The option expires at timé&' > ¢ and has strike pric&’. It is of European style, and can be
exercised only at expiration dafe Further, the underlying asset price and the related market
environment denoted hy; have the following characteristics:

1. The risk-free interest rate is constant at
2. The underlying stock price dynamics are described in continuous time by the stochastic
differential equation (SDE)®

dSt = u(St)Stdt + O'Stth te [0, OO) (51)

whereWW; represents a Wiener process with respect to real-world probabiltfy
To emphasize an important aspect of the previous SDE, the dynami§s afe

assumed to have a constgr@rcentagevariance during infinitesimally short intervals.
Yet, the drift component;.(S;)S;, can be general and needt be specified further.
Arbitrage arguments are used to eliminate tHe&;) and replace it with the risk-free
instantaneous spot ratén the previous equation.

3. The stock pays no dividends, and there are no stock splits or other corporate actions during
the periodt, T7).

4. Finally, there are no transaction costs and no bid-ask spreads.

15 Appendix 8-2 discusses SDEs further.
16 The assumption of a Wiener process implies heuristically that
E¢[dWe] =0
and that
Ey[dWy)? = dt

These increments are the continuous time equivalents of sequences of normally distributed variables. For a discussion
of stochastic differential equations and the Wiener process, see, for example, @ksendal (2003). Neftci (2000) provides
the heuristics.
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Under these assumptions, we can solve the PDE in equations (49) and (51) and obtain the
Black-Scholes formula:
C(t) = S;N(dy) — Ke "M~ N(dy) (52)

whered,, d» are

) log (5) + (r+ %) (T 1) .

' ovT —t
0 log (%) + (7" — %) (T —1t) 54

° oVl —t

The N(z) denotes the cumulative standard normal probability:
| 1,2

N(z) = 2% d 55
@=[ =i (55)

Inthisformulay, o, T', andK are considerepgarameterssince the formula holds in this version,
only when these components are kept constafhevariablesareS; andt. The latter is allowed
to change during the life of the option.

Given this formula, we can take the partial derivatives of

C(t) = C(Sy, t|r, 0, T, K) (56)

with respect to the variables andt andwith respect to the parametetss, T, and K. These
partials are th&reeks They represent the sensitivities of the option price with respect to a small
variation in the parameters and variables.

5.2.1. Black’s Formula

The Black-Scholes formula in equation (52) is the solution to the fundamental PDEdgtian
hedging is done with the “cash” underlying. As discussed earlier, trading gains and funding costs
lead to the PDE:

1
TCSSt —rC + 50530'233 = _Ct (57)
with the boundary condition:
C(ST, T) = maX[ST - K, 0} (58)

When the underlying becomegaward contract, thes; will become the corresponding forward
price denoted by; and the Black-Scholes PDE will change slightly.

Unlike a cash underlying, buying and selling a forward contract does not involve funding.
Long and short forward positions acemmitmentso buy and sell at a future datg, rather
than outright purchases of the underlying asset. Thus, the only cash movements will be interest
expense for funding the call, and cash gains from hedge adjustments. This means that the
corresponding PDE will look like

1
1 O = G (59)

17 The volatility of the underlying needs to be constant during the life of the option. Otherwise, the formula will not
hold, even though the logic behind the derivation would.
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with the same boundary condition:
C(Fr,T) = max[Fr — K, 0] (60)

whereF; is now the forward price of the underlying.
The solution to this PDE is given by the so-callBthck’s formulain the case where the
options are of European style.

C(F,, t)Back = =" (T=) B, N(dy) — KN(dy)) (61)
with
log &t + 1o?(T — ¢
d}131ack _ 0g K + 20 ( ) (62)
o/ (T —t)
dglaCk _ d1131ack — o (T _ t) (63)

Black’s formula is useful in many practical circumstances where the Black-Scholes formula
cannot be applied directly. Interest rate derivatives such as caps and floors, for example, are
options written on Libor rates that will be observed at future dates. Such settings lend themselves

better to the use of Black’s formula. The underlying riskfisravardinterest rate such dsrward

Libor, and the related option prices are given by Black’s formula. However, the reader should
remember that in the preceding version of Black’s formula the spot rate is taken as constant. In

Chapter 15 this assumption will be relaxed.

Other Formulas

The Black-Scholes type PDEs can be solved for a closed-form formula under somewhat differ-
ent conditions as well. These operations result in expressions that are similar but contain further

parameters and variables. We consider two cases of interest. Our first exampuleoiesar
option.

5.3.1. Chooser Options

Consider a vanilla put?(¢) and a vanilla callC'(¢) written onS; with strike K, and expiration
T'. A chooser option then is an option that gives the right to choose bet@Wégrand P(t) at
some later daté&}. Its payoffat timeTy, with Ty < T'is

C™(Ty) = max[C(St,, To), P(St,, To)] (64)
Arbitrage arguments lead to the equality
P(S1,,To) = —(Sg, — Ke "=y 4+ C(Sy,, T) (65)
Using this, (64) can be written as
C"(Ty) = max[C(St,, Tp), — (S, — Ke "T=T0)) + C(S,, Tp)] (66)
or, taking the common term out,
CM(To) = C(S,, Tp) + max[—(Sg, — Ke™"T~1), 0] (67)

In other words, the chooser option payoff is either equal to the value of the call afginoe it
is that plus a positive increment, in the case that

(S, — Ke "T=T0)) < (68)
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But, this is equal to the payoff of a put with strike prisg~"(T~70) and exercise dat,. Thus,
the pricing formula for the chooser option is given by

Ch(t) = [S;N(dy) — Ke " TIN(dy)] + [—SN(—dy) + Ke " T=T0) e=7(To=t) N (_ ()]

(69)
Simplifying:
C"(t) = [Se(N(dr) — N(=dv))] + Ke "I (N(~dz) — N(d2)) (70)
with
IS4 (rk30?) (T —1t)
dyo = o T 1) (71)
dis— In % + (r(T —t) £ $0*(Tp — t)) (72)

g (TO - t)

A more interesting example from our point of view is the application of the Black-Scholes
approach to barrier options, which we consider next.

5.3.2. Barrier Options

Barrier options will be treated in detail in the next chapter. Here we just define these instru-
ments, and explain the closed form formula that is associated with them under some simplifying
assumptions. This will close the discussion of the application spectrum of Black-Scholes type
formulas.

Consider a European vanilla call, written 6f, with strike K and expirationil’,t < T.
Assume thats; satisfies all Black-Scholes assumptions. Considerder H, and assume that
H < S; < K as of timet. Suppose we write a contract stipulating that if, during the life of the
contract,[t, T, S; falls below the levelH, the option disappears and the option writer will
have no further obligation. In other words, as longas. S,,, u € [t, T, the vanilla option is in
effect, but as soon &s, falls belowH, the option dies. This isbarrier option—specifically a
down-and-oubarrier. Two examples are shown in Figure 8-8a.

The pricing formula for the down-and-out call is given by

CPt)=C(t) - J(t) forH < S,

(73)
C’t)y=0 forS, < H

Here theC'(¢) is the value of the vanilla call, which is given by the standard Black-Scholes
formula, and where thé(¢) is the discount that needs to be applied because the option may die
if S, falls belowH during[t, T']. See Figure 8-8b. The formula fdi(¢) is

EGEP )
J(t) = St <St) ’ N(Cl) — KG_T(T_t) (S,g) ’ N(Cg) (74)

where

o log e+ (r+ 40?)(T — 1)
2 oVT —t

It is interesting to note that whe$} touches the barrier

(75)

S, =H (76)
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FIGURE 8-8a

the formula for.J (t) becomes

J(t) = SN (dy) — Ke " T=Y N (dy)

That is to say, the value @f*(¢) is zero:

(77)

(78)

This characterization of a barrier option as a standard option plus or minus a discount term is
very useful from a financial engineering angle. In the next chapter, we will obtain some simple
contractual equations for barriers, and the use of discounts will then be useful for obtaining

Black-Scholes type formulas for other types of barriers.

5.4. Uses of Black-Scholes-Type Formulas

Obviously, the assumptions underlying the derivation of the Black-Scholes formula are quite
restrictive. This becomes especially clear from the way we introduced options in this book. In
particular, if options are used to bet on the direction of volatility, then how can the assumption
of constant percentage volatility possibly be satisfied? This issue will be discussed further in
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later chapters where the way market professionals use the Black-Scholes formula while trading
volatility is clarified.

When the underlying asset is an interest rate instrument or a foreign currency, some of the
Black-Scholes assumptions become untenb¥et, when these assumptions are relaxed, the
logic used in deriving the Black-Scholes formula may not result in a PDE that can be solved for
a closed-form formula.

Hence, a market practitioner may want to use the Black-Scholes formula or variants of it,
and then adjust the formula in some ad hoc, yet practical, ways. This may be preferable to
trying to derive new complicated formulas that may accommodate more realistic assumptions.
Also, even though the Black-Scholes formula does not hold when the underlying assumptions
change, acting as if the assumptions hold yields results that are surprisingly ¥oWestyill
see that this is exactly what happens when traders adjust the volatility parameter depending on
the “moneyness” of the option under consideration.

18 For example, a foreign currency pays foreign interest. This is like an underlying stock paying dividends.

19 See for example, El-Karouit al.
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This completes our brief discussion of the first set of tools that are essential for option
analysis, namely Black-Scholes types closed-form formulas that give the arbitrage-free price of
an option under some stringent conditions. Next, we discuss the second set of tools that traders
and market makers routinely use: various sensitivity factors called the “Greeks.”

The Greeks and Their Uses

The Black-Scholes formula gives the value of a vanilla call (put) option under some specific
assumptions. Obviously, this is useful for calculating the arbitrage-free value of an option. But
a financial engineer needs methods for determining how the option preraigr,changes

as the variables or the parameters in the formula change within the market environment. This
is important since the assumptions used in deriving the Black-Scholes foaneularealistic.
Traders, market makers, or risk managers must constantly monitor the sensitivity of their option
books with respect to changessi, r, t, or o. The role of Greeks should be well understood.

EXAMPLE:

A change i is a good example. We motivated option positions essentially (but not fully)
as positions taken on volatility. It is clear that volatility is not constant as assumed in
the Black-Scholes world. Once an option is bought and delta-hedged, the hedge ratio
C; and theC;; both depend on the movements in the volatility parameter

Hence, the “hedged” option position will still be risky in many ways. For example,
depending on the way changesdnand S; affect theC,,, a market maker may be
correct in his or her forecast of how muéh will fluctuate, yet may still lose money on
a long option position.

A further difficulty is that option sensitivities may not be uniform across the strike gtice
or expiration7'. For options written on theameunderlying, differences il and7" lead to
what are callegmile effectandterm structure effectsespectively, and should be taken into
account carefully.

Option sensitivity parameters are called the “Greeks” in the options literature. We discuss
them next and provide several practical examples.

Delta

Consider the Black-Scholes formulg S;, t|r, o, T, K'). How much would this theoretical price
change if the underlying asset pricg, moved by an infinitesimal amount?

One theoretical answer to this question can be given by using the partial derivative of the
function with respect t&;. This is by definition theleltaat timet:

GC(St,t"f', g, T, K)
0S5,

This partial derivative was denoted By earlier. Note thatleltais the local sensitivity of the
option price to an infinitesimal change $ only, which incidentally is the reason behind using
partial derivative notation.

To get some intuition on this, remember that the price curve for a long call has an upward
slope in the standar@'(t), S; space. Being the slope of the tangent to this curved#ie of
a long call (put) is always positive (negative). The situation is represented in Figure 8-9. Here,
we consider three outcomes for the underlying asset price represented By;, andS¢ and
hence obtain three pointd, B, andC', on the option pricing curve. At each point, we can draw
a tangent. The slope of this tangent corresponds td¢htaat the respective price.

delta = (79)



6. The Greeks and Their Uses 229

FIGURE 8-9

e AtpointC, the slope, and hence, tteltais close to zero, since the curve is approaching
the horizontal axis as; falls.
At point B, thedeltais close to one, since the curve is approaching a line with sfape
At point A, thedeltais in the “middle,” and the slope of the tangent is between zero
and one.

Thus, we always hav@ < delta < 1 in case of a long call position. As mentioned earlier,
when the option is at-the-money (ATM), thleltais close to.5.

6.1.1. Convention

Market professionals do not like to use decimal points. The convention in option markets is
to think about trading, not one, but 100 options, so thatdéka of option positions can be
referred to in whole numbers, between 0 and 100. According to this conventiatgltaef an
ATM option is around 50. A 2%5teltaoption would be out-of-the-money and a @ékaoption
in-the-money. Especially in FX markets, traders use this terminology to trade options.

Under these conditions, an options trader may evaluate his or her exposuredekag
points. Atrader may bleng deltg which meansthat the position gains if the underlying increases,
and loses if the underlying decreaseshrt deltaposition implies the opposite.

6.1.2. The Exact Expression

The partial derivative in equation (79) can be taken in case the call option is European and the
price is given by the Black-Scholes formula. Doing so, we obtaindélea of this important
special case:

(T—t)(r+$0?)+log(S: / K)

GC(St,t‘T’,O',T,K) :/ \/(T—t)d 1 eféz(‘)dx (80)
0S5 oo

= N(d1)

This derivation is summarized in Appendix 8-1. It is shown thatdbka is itself a function
that depends on the “variableS;, K, r, o, and on the remaining life of the optiof,— ¢. This
function is in the form of grobability. Thedeltais between 0 and 1, and the function will have
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the familiarS-shape of a continuous cumulative distribution function (CDF). This, incidentally,
means that the derivative of tldeltawith respect taS;, which is calledgammawill have the
shape of a probabilitgensityfunction (PDF)?° A typical deltawill thus look like the S-shaped
curve shown in Figure 8-10.

We can also see from this formula how various movements in market variables will affect
this particular option sensitivity. The formula shows that whatever increases the ratio

log(S:/K) + (r + %02)(T —t)
oV —t
will increase thalelta, whatever decreases this ratio, will decreasedisiea

For example, it is clear that asincreases, theeltawill increase. On the other hand, a
decrease in the moneyness of the call option, defined as the ratio

(81)

St

1% (82)

decreases thdelta The effect of volatility changes is more ambiguous and depends on the
moneyness of the option.

EXAMPLE:

We calculate the delta for some specific options. We first assume the Black-Scholes
world, even though the relevant market we are operating in may violate many of the
Black-Scholes assumptions. This assumes, for example, that the dividend yield of the

delta
1 b e e e e e e e e e e e e e e e f e E e e e e e e e e e e e e e — - —
o8 Note the resemblance
) 10 a probhability distribution
function.
06 -
QA |-
02 -
Q0.0 | | " | | Underlying
80 20 100 110 120 price
ATM delta with K =100

FIGURE 8-10

20 some traders use thielta of a particular option as if it is the probability of being in-the-money. This could be
misleading.
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underlying is zero and this assumption may not be satisfied in real life cases. Second,
we differentiate the functio@'(t)

C(t) = S¢N(dy) — Ke " T N(dy) (83)

where thed; andd, are as given in equations (53) and (54), with respecttoThen,
we substitute values observed &y, K, r, o, (T — t).

Suppose the Microsoft December calls and puts shown in the table from our first exam-
ple in this chapter satisfy these assumptions. The deltas can be calculated based on the
following parameter values:

Sy =61.15,r = .025,0 = 30.7%,T — t = 58/365 (84)
Here,o is the implied volatility obtained by solving the equation for= 60,

C(61.15, 60, .025,58/365, 0) = Observed price (85)

Plugging the observed data into the formula for delta yields the following values:

Calls Delta
Dec 55.00 .82
Dec 60.00 .59
Dec 65.00 .34
Dec 70.00 .16
Puts Delta
Dec 55.00 —.17
Dec 60.00 —.40
Dec 65.00 —.65
Dec 70.00 —.84

We can make some interesting observations:

1. The ATM calls and puts have the same price.

2. Their deltas, however, are different.

3. The calls and puts that are equally far from the ATM have slightly different deltas
in absolute value.

According to the last point, if we consider 25-delta calls and puts, they will not be exactly
the same?!

We now point out to somguestionableassumptions used in our example. First, in calcu-
lating thedeltasfor various strikes, we always used th@mevolatility parameters. This is
not a trivial point. Options that are identical in every other aspect, except for their &frike
mayhave different implied volatilities. There may bealatility smile Using the ATM implied

21 We ignore the fact that these CBOE equity options are American.



232

6.2.

CHAPTER 8. Mechanics of Options

volatility in calculating thedelta of all options may not be the correct procedure. Second, we
assumed a zero dividend yield, which is not realistic either. Normally, stocks have positive
expected dividend yields and some correction for this should be made when option prices and
the relevant Greeks are calculated. A rough way of doing it is to calculate an annual expected
percentage dividend yield and subtract it from the risk-free raf€hird, should we use;

or a futures market equivalent, in case this latter existsdéi evaluated in the futures or
forward price may be more desirable.

Gamma

Gammarepresents the rate of change of tfetaas the underlying risl§; changes. Changes in
deltawere seen to play a fundamental role in determining the price of a vanilla option. Hence,
gammais another important Greek. It is given by the second partial derivati¢& 5§, t) with
respect toS;:

0*C (S, tr,o,T, K)
aS?

gamma =

(86)

We can easily obtain the exact expressiongammain the case of a European call. The deri-
vation in Appendix 8-1 gives

L (1es(2)trr -t be2rn\?
0*C (S, tlr, 0, T, K) 1 ! _§< e )d
u

952 T S,ovT =1 | Vo

(87)

Gammashows how much thelelta hedge should be adjusted &s changes. Figure 8-11
illustrates thegammafor the Black-Scholes formula. We see the already-mentioned property.

Gamma
0.06 - Note the resemblance to
vega. Main difference
005 - is in the scale.
0.04
0.03
0.02
Q.01
Q.00 | | | Undgr\\j\ng
80 90 100 110 120 130 price
ATM call gamma

FIGURE 8-11
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Gammais highest if the option is at-the-money, and approaches zero as the option becomes
deep in-the-monegr out-of-the-money.

We can gain some intuition on the shape of glaenmacurve. First, remember thgamma
is, in fact, the derivative oflelta with respect taS;. Second, remember thdelta itself had
the shape of @umulativenormal distribution. This means that the shapegammawill be
similar to that of a continuous, bell-shaped probabitignsityfunction, as expression (87)
indicates.

Consider now a numerical example dealing vggmmeacalculations. We use the same data
utilized earlier in the chapter.

EXAMPLE:

To calculate the gamma, we use the same table as in the first example in the chapter.
We take the partial derivative of the delta with respecbtoThis gives a new function

Si, K, r, o, (T —t), which measures the sensitivity of delta to the underlgingVe then
substitute the observed values ft K, r, o, (T —t) to obtain gamma at that particular
point.

For the Microsoft December calls and puts shown in the table, gammas are calculated
based on the parameter values

S, = 60.0,7 = .025,0 = .31%, T — t = 58/365, k = 60 (88)

whereo is the implicit volatility.

Again we are using the implicit volatility that corresponds to the ATM option in calcu-
lating the delta of all options, in-the-money or out.

Plugging the observed data into the formula for gamma yields the following values:

Calls Gamma
Dec 55.00 .034
Dec 60.00 .053
Dec 65.00 .050
Dec 70.00 .032
Puts Gamma
Dec 55.00 .034
Dec 60.00 .053
Dec 65.00 .050
Dec 70.00 .032

The following observations can be made:

1. The puts and calls with different distance to the ATM strike have gammas that are
alike but not exactly symmetric.
2. Gammais positive if the market maker is long the option; otherwise it is negative.

It is also clear from this table that gamma is highest when we are dealing with an ATM
option.
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Finally, we should mention that as time passes, the second-order curvature of ATM options
will increase as thgammafunction becomes more peaked and its tails go toward zero.

6.2.1. Market Use

We must comment on the role played ggmmain option trading. We have seen that long
deltaexposures can be hedged by going short using the underlying asset. But, lgamana
exposures hedged? Traders sometimes find this quite difficult. Especially in very short-dated,
deep out-of-the-money optiorgammacan suddenly go from zero to very high values and may
cause significant losses (or gains).

EXAMPLE:

The forex option market was caught short gamma in GBP/EUR last week. The spot rate
surged from GBP0.6742 to GBP0.6973 late the previous week, one-month volatilities
went up from about 9.6% to roughly 13.3%. This move forced players to cover their
gamma. (A typical market quote.)

This example shows one wdgltaandgammaare used by market professionals. Especially in the
foreign exchange markets, options of varying moneyness characteristics are labeled according
to theirdelta For example, consider 28eltaSterling puts. Given that an at-the-money put has

a deltaof around 50, these puts are out-of-the-money. Market makers had sold such options
and, after hedging thedteltaexposure, were holding shgammapositions. This meant that as

the Sterling-Euro exchange rate fluctuated, hedge adjustments led to higher than expected cash
outflows.

Vega

A critical Greek is thevega How much will the value of an option change if the volatility
parameterg, moves by an infinitesimal amount? This question relates to an option’s sensitivity
with respect to implied volatility movementgegais obtained by taking the partial derivative

of the function with respect te:

oC (S, t|r, o, T, K)
0o

An example ofvegais shown in Figure 8-12 for a call option. Note the resemblance to the
gammadisplayed earlier in Figure 8-11. According to this figure, tlegais greatest when the
option is at-the-money. This implies that if we use the ATM option as a vehicle to benefit from
oscillations inS;, we will also have maximum exposure to movements in the implied volatility.
We consider some exampleswagacalculations using actual data.

(89)

vega =

EXAMPLE:

Vega is the sensitivity with respect to the percentage volatility paranaetefithe option.
According to the convention, this is calculated using the Black-Scholes formula. We
differentiate the formula with respect to the volatility parameter

Doing this and then substituting
C(61.15,.025, 60, 58/365,0) = Observed price (90)

we get a measure of how this option’s prices will react to small changes in
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Vega
12 Vega effect goes to zero
as S;moves away from
10k strike price K =100
8 -
Y=
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0 | Undgr\y’mg
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ATM call vega

FIGURE 8-12

For the table above, we get the following results:

Calls Vega($)

Dec 55.00 6.02
Dec 60.00 9.4
Dec 65.00 8.9

Dec 70.00 5.6
Puts Vega($)
Dec 55.00 6.02
Dec 60.00 9.4
Dec 65.00 8.9

Dec 70.00 5.6

We can make the following comments:

1. At-the-money options have the largest values of vega.
2. Asimplied volatility increases, the ATM vega changes marginally, whereas the out-
of-the-money and in-the-money option vegas do change, and in the same direction.

Option traders can use thiegain calculating the “new” option price in case implied volatil-
ities change by some projected amount. For example, in the preceding example, if the implied
volatility increases by 2 percentage points, then the value of the Dec 60-put will increase approx-
imately by 0.19, everything else being the same.
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6.3.1. Market Use

Vegais animportant Greek because it permits market professionals to keep track of their exposure
to changes in implied volatility. This is important, since the Black-Scholes formula is derived in
a framework where volatility is assumed to be constant, yet used in an environment where the
volatility parameterg, changes. Market makers often quotedtaiirectly, instead of quoting the
Black-Scholes value of the option. Under these conditiseagacan be used to track exposure
of option books to changes in tlae This can be followed byega hedging

The following reading is one example of the usevefiaby the traders.

EXAMPLE:

Players dumped USD/JPY vol last week in a quiet spot market, causing volatilities to
go down further. One player was selling USD1 billion in six-month dollar/yen options

in the market. These trades were entered to hedge vega exposure. The drop in the vols
forced market makers to hedge exotic trades they had previously sold.

According to this reading, some practitioners wiereg volatility. They had bought options
when the dollar-yen exchange rate volatility was higher. They faegd risk Ifimplied volatility
declined, their position would lose value at a rate depending on the posiiegesTo cover
these risky positions, they sold volatility and caused further declines in this latter. The size of
vegais useful in determining such risks faced by such long or short volatility positions.

6.3.2. Vega Hedging

Vegais the response of the option value to a change in implied volatility. In a liquid market,
option traders quote implied volatility and this latter continuously fluctuates. This means that
the value of an existing option position also changes as implied volatility changes. Traders who
would like to eliminate this exposure usega hedgingn making their portfolioveganeutral.
Vegahedging in practice involves buying and selling options, since only these instruments have
convexity and hence, havega

Theta

Next, we ask how much the theoretical price of an option would change if a small amount of
time, dt, passes. We use the partial derivative of the function with respect to time parameter
which is callectheta
oC (S, tlr,o, T, K)
ot

According to thisthetameasures the decay in the time value of the option. The intuition behind
thetais simple. As time passes, one has less time to gain from fgtuoscillations. Option’s
time value decreases. Thus, we must hiduga < 0.

If the Black-Scholes assumptions are correct, we can calculate this derivative analytically
and plot it. The derivative is represented in Figure 8-13. We see that, all else being the same, a
plain vanilla option’s time value will decrease at a fastde as expiration approaches.

theta = (91)

Omega

This Greek relates to American options only and is an approximate measure developed by market
professionals to measure the expected life of an American-style option.
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FIGURE 8-13

Higher-Order Derivatives

The Greeks seen thus far are not the only sensitivities of interest. One can imagine many other
sensitivities that are important to market professionals and investors. In fact, we can calculate
the sensitivity of the previously mentioned Gre¢kemselvesvith respect taS,, o, ¢, andr.
These are higher-order cross partial derivatives and under some circumstances will be quite
relevant to the trader.

Two examples are as follows. Consider faanmeof an option. This Greek determines how
much cash can be earned as the underlgingscillates. But the value of tt|)]ammadepends on
the S; ando as well. Thus, gamma trademay be quite interested in the following sensitivities:

d gamma 0 gamma

0S: Oo (92)

These two Greeks are sometimes referred to asglkedandvolga, respectively. It is obvious
that the magnitude of these partials will be useful in determining the risks and gajashofia
positions. Exotic optiordeltasand gammasmay have discontinuities, and such high-order
moments may be very relevant.

Another interesting Greek is the derivativevagawith respect tas;:

Jdwvega
0S5,

93
dwvega 3)

oo

= volga

This derivative is of interest to @ega trader In a sense, this is volatilitgamma hence the
name. Similarly, the partial derivative of all important Greeks with respect to a small change in
time parameter may provide information about the way the Greeks move over time.
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Greeks and PDEs

The fundamental Black-Scholes PDE that we derived in this chapter can be reinterpreted using
the Greeks just defined. In fact, we can plug the Greeks into the Black-Scholes PDE

1
50550—253 +7CS; —rC +Cy =0 (94)
and recast it as
1
5 gamma 0282 + 1 delta Sy — rC + theta = 0 (95)

In this interpretation, being long in options means, “earnigginmaand “paying”theta

It is also worth noting that the higher order Greeks mentioned in equations (92) and (93)
arenot present in equation (95). This is because they are second order Greeks. The first order
Greeks are related to changes in the underlying&iSk, Ao ortimeA, whereas the higher order
Greeks would relate to changes that will have sizes given by the prodhSig\o) or (AcA).
In fact, whenAS;, Ao, A are “small” but nonnegligible, products of two small numbers such
as(AS;Ao) are even smaller and negligibiBependingon the sizes of incremental changes in
S;, or volatility.??

In some real life applications, when volatility “spikes,” higher order Greeks may become
relevant. Yet, in theoretical models with standard assumptions, wkere0, they fall from the
overall picture, and do not contribute to the PDE in equation (94).

6.7.1. Gamma Trading

The Black-Scholes PDE can be used to explain whgdrmama tradeiintends to accomplish.
Assume that the real-lifgammais correctly calculated by choosing a formula &¢S;, t|r, K,
o, T) and then taking the derivative:

820(5t, t|7“, K, ag, T)
aS? ’
Following the logic that led to the Black-Scholes PDE in equation (9¢aramatrader would,

first, form asubjective viewon the size of expected changes in the underlying using some
subjective probability?*, as of timet, < t. The gains can be written 83,

(96)

gamma =

« 1
Etlz Jgamma (AS;)? (97)

This term would be greater, the greater the oscillatiorf ifT hen these gains will be compared
with interest expenses and the loss of time value. If the expeetetnagains are greater than
these costs, then tigammeatrader will golong gammalf, in contrast, the costs are greater, the
gammatrader will prefer to beshort gamma

There are at least two important comments that need to be made about tfadintas

6.7.2. Gamma Trading versus Vega
First of all, thegammaof an option position depends on the implied volatility parameter

This parameter represents implied volatility. It needhave the same value as the (percentage)

22 The Wiener process has variantieover infinitesimal intervals, hengammarelates to first order changes.

23 Thegammaitself depends o1$;, so it needs to be kept inside the expectation operator.
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oscillations anticipated bygammearader. In fact, gammarader’s subjective (expected) gains,
due toS; oscillations, are given by

Etlz* %gamma (ASy)? (98)

There is no guarantee that the implied volatility parameter will satisfy the equality
o*SEAE; [gamma) = Et]Z* [gamma (AS;)?] (99)

This iseven ifthe trader is correct in his or her anticipation. The right-hand side of this expres-
sion represents the anticipated (percentage) oscillations in the underlying asset that depend on
a subjective probability distribution, whereas the left-hand side is the volatility value that is
plugged into the Black-Scholes formula to get the option’s fair price.

Thus, gammarader’s gains and losses also depend on the implied volatility movements, and
the option’svegawill be a factor here. For examplegammarader may be right about increased
real-world oscillations, but, may still lose moneyinfiplied volatility, o, falls simultaneously.

This will lower the value of the position if

aCtss
oo

<0 (100)

The following reading illustrates the approaches a trader or risk manager may adopt with
respect tovregaandgammarisks.

EXAMPLE:

The VOLX contracts, (one) the new futures based on the price volatility of three reference
markets measured by the closing levels of the benchmark cash index. The three are the
German (DAX), UK (FT-SE), and Swedish (OMX) markets.

The designers argue that VOLX products, by creating a term structure of volatility that
is arbitrageable, offer numerous hedging and trading possibilities. This covers both
vega and gamma exposures and also takes in the long-dated options positions that are
traditionally very difficult to hedge with short options.

Simply put, option managers who have net short positions and therefore are exposed to
increases in volatility, can hedge those positions by being long the VOLX contract. The
reverse is equally true. As a pure form of vega, the contracts offer particular benefits for
vega hedging. Their vega profile is constant for any level of spot ahead of the rate setting
period, and then diminishes linearly once the RSP has begun.

The gamma of VOLX futures, in contrast, is very different from those of traditional
options. Although a risk manager would traditionally hedge an option position by using
a product with a similar gamma profile, hedging the gamma of a complex book with
diversified strikes can become unwieldy. VOLX gamma, regardless of time and the level
of the underlying spot, is evenly distributed. VOLX will be particularly useful for the tra-
ditionally hard to hedge out-of-the-money wings of an option portfolio. (IFR, November
23, 1996)
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6.7.3. Which Expectation?

We characterized trading gains expected figfoscillations using the expression:
1
Etlz* Z9amma (AS;)? (101)

Here the expectatio®;’ "[(AS;)?] is taken with respect to subjective probability distribution

P*. The behavior ofjammatraders depends on their subjective probability, but the market-
determined arbitrage-free price will be objective and the corresponding expectation has to be
arbitrage-free. The corresponding pricing formulas will depend on objetsikadjusted prob-
abilities.

Real-Life Complications

In actual markets, the issues discussed here should be applied with care, because there will be
significant deviations from the theoretical Black-Scholes worldc&yventiontraders consider
the Black-Scholes world as the benchmark to use, although its shortcomings are well known.

Every assumption in the Black-Scholes world can be violated. Sometimes these deviations
are harmless or can easily be accommodated by modifying the formula. Some such modifications
of the formula would be minor, and others more significant, but in the end they take care of the
problem at a reasonable effort.

Yet, there are two cases that require substantial modifications. The first concerns the behav-
ior of volatility. In financial markets, not only is volatilitpot constant, but it also has some
unexpected characteristics. One of these anomalies Eniiie effectg* Volatility has, also, a
term structure

The second case is when interest rates are stochastic, and the underlying asset is an interest-
rate-related instrument. Here, the deviation from the Black-Scholes world, again, leads to sig-
nificant changes.

Dealing with Option Books

This chapter discussegamma delta, andvegarisks for single option positions. Yet, market
makers do not deal with single options. They have option books and they try to manage the
delta, gammaandvegarisks of portfolios of options. This complicates the hedging and risk
management significantly. The existence of exotic options compounds these difficulties.

First of all, option books consist of options on different, possibly correlated, assets. Second,
implied volatility may be different across strikes and expiration dates, and a straightforward
application ofdelta, gammaandvegaconcepts to the portfolio may become impossible. Third,
while for single optionslelta vega andgammeéhave known shapes and dynamics, for portfolios
of options, the shapes dklta gamma andvegaare more complex and their movement over
time may be more difficult to track.

Futures as Underlying

This chapter has discussed options written on cash instruments. How would we analyze options
that are written on a futures or forward contract? There are two steps in designing option

24 Smile is the change in implied volatility as strike price changes. It will be dealt within Chapter 15.
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contracts. First, a futures or a forward contract is introduced on the cash instrument, and second,
an option is written on the futures. The holder of the option has the right to buy one or more
futures contracts.

Why would anyone write an option on futures (forwards), instead of writing it on the cash
instrument directly?

In fact, the advantages of such contracts are many, and the fact that option contracts written
on futures and forwards are the most liquid is not a coincidence. First of all, if one were to
buy and sell the underlying in order to hedge the option positions, the futures contracts are
more convenient. They are more liquid, and they do not require upfront cash payments. Second,
hedging with cash instruments could imply, for example, selling or buying thousands of barrels
of oil. Where would a trader put so much oil, and where would he getit? Worse, dynamic hedging
requires adjusting such positions continuously. It would be very inconvenient to buy and sell a
cash underlying. Long and short positions in futures do not result in delivery until the expiration
date. Hence, the trader can constantly adjust his or her position without having to store barrels of
oil at each rebalancing of the hedge. Futures are also more liquid and the associated transactions
costs and counterparty risks are much smaller.

Thus, the choice of futures and forwards as the underlying instead of cash instruments is,
in fact, clever contract design. But we must remember that futures come with daily marking to
market. Forward contracts, on the other hand, may not require any marking to market until the
expiration date.

7.2.1. Delivery Mismatch

Note the possibility of a mismatch. The option may result in the delivery of a futures contract
at timeT’, but the futures contract may not expire at that same time. Instead, it may expire at
atimeT 4+ A and may result in the delivery of the cash commaodity. Such timing mismatches

introduce new risks.

Conclusion: What Is an Option?

This chapter has shown that an option is essentially a volatility instrument. The critical parameter
is how much the underlying risk oscillates within a given interval. We also saw that there are
many other risks to manage. The implied volatility parametemay change, interest rates
may fluctuate, and option sensitivities may behave unexpectedly. These risks are not “costs” of
maintaining the position perhaps, but they affect pricing and play an important role in option
trading.

Suggested Reading

Most textbooks approach options as directional instruments. There are, however, some nontech-
nical sources that treat options as volatility instruments directly. The first to come to mind is
Natenberg(1994). Another such approach is@onolly (1999). A reader who prefers a techni-

cal approach has to consider more abstract treatments sudliuesela and Rutkowski(1998).

Several texts discuss Black-Scholes theory. The one that we recomrDerffici$2001). Read-

ers should look atVilmott (2000) for the technical details. For the useful combination of options
analysis with Mathematica, the reader can con$itjanovic(2003). Risk publications have
several books that collect articles that have the same approach used in this cRagit€¢1992)

is a good example. There, the reader will find a comprehensive discussion of the Black-Scholes
formula. Examples on Greeks were based on the terminology used in Derivatives Week.
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APPENDIX 8-1

In this appendix, we derive formulas fdeltaandgamma The relatively lengthy derivation is
for delta

Derivation of Delta

The Black-Scholes formula for a plain vanilla European call expiralipstrike, K, is given

by
log 5L +(r+302)(T—1) log St +(r—Lo2)(1—1)
oT—t 1 oT—t
C(Si,t) = St/ ' ﬁe_%"zdu — e_T(T_t)K/ '
—00 ™ —0o
(102)
1 1.2
e 2" du
V2T
Rearrange and let, = —24— to get
logzt+%02(T—t) logzt7%02(T7t)
oVT—% 1 T —1
C(xs,t) = Ke " T | g, / ’ e~ 3% du — / ’ (103)
—0 vV 27T —00
1 1,2
e 2" du 104
= ] (104)

Now differentiate with respect to,:

log.’tt#»%o'Q(T—t)

Tl e | [T et - (109
Tt —o0

1 L [(logzit+to?(T—1) 2
6_5 ovVT—1

106
o (106)
logzp—Lo2(T—1)\?
1 1 - =2 -7
_ ¢ 2( oVt ) (107)
oV T —t /27
Now we show that the last two terms in this expression sum to zero and that
log ¢ l<72(T7t) 2 lo ztfln)(Tft) 2
1 1 e*%(%) _ 1 1 e*%(%) (108)
oI —t | V27 x0T —t /27
To see this, on the right-hand side, use the substitution:
1 :
— =g lg® (109)
Tt

and then rearrange the exponent in the exponential function.
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Thus, we are left with

log x4+ 5 02(T = t)
oVT—t 1 1,2

90z, i) e ¥ dy (110)

= K —r(T—t)
8.’1),5 €

Now use the chain rule and obtain

0S¢

dC(Sy,t) _ /ﬁ L 1wy, (111)
— N(dy) (112)

Derivation of Gamma

Oncedeltaof a European call is obtained, tgammawill be the derivative of thalelta This
gives

_ ovVT—t

952 S,oT —iv2n.

L (logwitto?(T—1)\?
92C(S, t) 1 1 —5(*7) (113)

H S,
with Ty = WFT_”
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APPENDIX 8-2

In this appendix we review some basic concepts from stochastic calculus. This brief review can
be used as a reference point for some of the concepts utilized in later chapters. @ksendal (2003)
is a good source that provides an introductory discussion on stochastic calculus. Heuristics can
be found in Neftci (2000).

Stochastic Differential Equations

A Stochastic Differential Equation (SDE), driven by a Wiener prod&sss written as,
dS; = CL(St, t)dt + b(St, t)th te [0, OO) (114)

This equation describes the dynamicsSpfover time. ThéNiener proces$V; has increments
AW, that are normally distributed with mean zero and variaficevhere theA is a small time
interval. These increments are uncorrelated over time. As a result, the future increments of a
Wiener process are unpredictable given the information at#jrires 7,

Thea(S:,t) and theb(S;, t) are known as thdrift and thediffusionparameters. The drift
parameter modelexpectecchanges inS;. The diffusion component models the correspond-
ing volatility. When unpredictable movements occur as jumps, this will be referreduaspa
component

A jump component would require adding terms such\éS;, t)d.J; to the right-hand side
of the SDE shown above. Otherwise thewill be known as aiffusion processwith a jump
component it becomesjamp-diffusion process

Examples

The simplest Stochastic Differential Equation is the one where the drift and diffusion coefficients
are independent of the information received over time:

dS; = pdt + odW; t € [0,00) (115)

Here, thelV; is a standard Wiener process with varianck this SDE, the coefficientgs and
o do not have time subscriptsas time passes, they do not change.

The standard SDE used to model underlying asset prices gettraetric processt is the
model assumed in the Black and Scholes world:

dS; = ,uStdt + oS dW, t e [O, OO) (116)

This model implies that drift and the diffusion parameters change proportionallySyith
An SDE that has been found useful in modelling interest rates isytdan revertingnodel:

According to this, asS, falls below a “long-run meanj., the term(p — S;) will become
positive, which makedS; more likely to be positive, hencé, will revert back to the meap.

Ito’s Lemma

Supposef (S;) is a function of aandomprocessS; having the dynamics:

dSt = G/(St, t)dt + b(St, t)th te [O, OO) (118)
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We want to expand (.S;) around a known value f;, sayS, using Taylor series expansions.
The expansion will yield:

F(S0) = F(S0) + F(S0)[S0 — S0l + 3 fos(S0)[S0 — Sol? + R(S,S)  (119)

where,R(S;, Sp) represents all the remaining terms of the Taylor series expansion.
First note thatf (.S;) can be rewritten ag;(Sy + AS;), if we defineAS, as:

AS, = S; — So (120)

Then, the Taylor series approximation will have the form:
1
f(So+ ASe) = f(So) = fsAS, + §fssAS? (121)

The AS,; is a “small” change in the random variat#e. In approximating the right-hand side,
we keepthe termf,AS;.

Consider the second teréyfss(ASt)Q. If the S, is deterministic, one can say that the term
(AS;)? is small. This could be justified by keeping the sizeo$; nonnegligible, yet small
enough that its squar@\S;)? is negligible. However, here, changes $a will be random.
Suppose these changes have zero mean. Then the variance is,

0 < E[AS]? 2 b(S,, t)°A (122)

This equality means that as long 8sis random, the right-hand side of (121) must keep the
second order term in any type of Taylor series approximation.

Moving to infinitesimal timedt, this gives Ito’s Lemma, which is the stochastic version of
the Chain rule,

AF(S0) = FodSe + 5 fusb(S,, 1)t (123)

This equation can be regarded as the dynamics of the pr¢¢8sg which is driven byS;. The
dS; term in the above equation can be substituted out using tldgnamics.

Girsanov Theorem

Girsanov Theorem provides the general framework for transforming one probability measure
into another “equivalent” measure. It is an abstract result that plays a very important role in
pricing.

In heuristic terms, this theorem says the following. If we are given a Wiener prétgss
then, we can multiply the probability distribution of this process by a special fungtitimat
depends on time, and on the information available at timethe I;. This way we can obtain a
newWiener proces$V; with probability distributionP. The two processes will relate to each
other through the relation:

dW, = dW, — X,dt (124)

That is to sath is obtained by subtracting aip-dependent ternX;, from W,.

Girsanov Theoremi is often used in the following way: (1) we have an expectation to calculate,
(2) we transform the original probability measure, such that expectation becomes easier to
calculate, and (3) we calculate the expectation under the new probability.
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Exercises

1. Considerthe following comment dealing with options written on the euro-dollar exchange
rate:

Some traders, thinking that implied volatility was too high entered new trades.

One example was to sell one-year in-the-money euro Puts with strikes around
USD1.10 and buy one-year at-the-money euro Puts. If the euro is above
USD1.10 at maturity, the trader makes the difference in the premiums. The
trades were put on across the curve. (Based on an article in Derivatives Week).

(a) Draw the profit/loss diagrams of this position at expiration for each option
separately.

(b) What would be the gross payoff at expiry?

(c) What would be the net payoff at expiry?

(d) Why would the traders buy “volatility” given that they buy and sell options?
Don't these two cancel each other in terms of volatility exposure?

2. Consider the following quote:

Implied U.S. dollar/New Zeland dollar volatility fell to 10.1%/11.1% on
Tuesday. Traders bought at-the-money options at the beginning of the week,
ahead of the Federal Reserve interest-rate cut. They anticipated a rate cut
which would increase short-term volatility. They wanted to be long gamma.
Trades were typically for one-week maturities, in average notionals of USD10-
20 million. (Based on an article in Derivatives Week).

(a) Explain why traders wanted to be loggmmawhen the volatility was expected
to increase.

(b) Show your argument using numerical values for Greeks and the data given in
the reading.

(c) How much money would the trader lose under these circumstances? Calculate
approximately, using the data supplied in the reading. Assume that the position
was originally for USD30 million.

3. Consider the following episode:

EUR/USD one-month implied volatility sank by 2.7% to 10% Wednesday as
traders hedged this euro exposure against the greenback, as the euro plunged
to historic lows on the spot market. After the European Central Bank raised
interestrates by 25 basis points, the euro fell againstleading to a strong demand
for euro Puts. The euro touched a low of USD0.931 Wednesday. (Based on an
article in Derivatives Week).

(&) Inthe euro/dollar market, traders rushed to stock ugammaby buying
short-dated euro puts struck below USDO0.88 to hedge against the possibility
that the interest rates rise. Under normal circumstances, what would happen to
the currency?

(b) When the euro failed to respond and fell against major currencies, why would
the traders then rush to buy euro puts? Explain using payoff diagrams.

(c) Would a trader “stock upgammaif euro-triggered barrier options?
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4. You are given the following table concerning the price of a put option satisfying all
Black-Scholes assumptions. The strike is 20 and the volatility is 30%. The risk-free rate
is 2.5%.

Option price Underlying asset price

10 10
5 15
13 20

.25 25
.14 30

The option expires in 100 days. Assume (for convenience), that, for every month the
option loses approximately one-third of its value.

(a) How can you approximate the optidelta? Calculatehreeapproximations for
thedeltain the previous case.

(b) Suppose you bought the option when the underlying wae asing borrowed
funds. You have hedged this position in a standard fashion. How much do you
gain or lose in four equal time periods if you observe the following price
sequence in that order:

10, 25,25, 30 (125)
(c) Suppose now that the underlying price follows the new trajectory given by
10, 30, 10, 30 (126)

How much do you gain or lose until expiration?
(d) Explain the difference between gains and losses.

5. Search the Internet for the following questions.

(&) Which sensitivities do the Greeks, volga and Vanna represent?
(b) Why are they relevant foregahedging?



