
C H A P T E R 8

Mechanics of Options

1. Introduction

This chapter is an introduction to methods used in dealing withoptionality in financial instru-
ments. Compared to most existing textbooks, the present text adopts a different way of looking
at options. We discuss options from the point of view of an options market maker. In our setting,
options arenotpresented as instruments to bet on or hedge against thedirectionof an underlying
risk. Instead, options are motivated as instruments ofvolatility.

In the traditional textbook approach, options are introduced asdirectional instruments.
This is not how market professionals think of options. In most textbooks, a call option becomes
in-the-money and hence profitable if the underlying price increases, indirectly associating it
with a bullish view. The treatment of put options is similar. Puts are seen as appropriate for an
investor who thinks the price of the underlying asset is going to decrease. For an end investor
or retail client, suchdirectional motivationfor options may be natural. But, looking at options
this way is misleading if we are concerned with the interbank or interdealer market. In fact,
motivating options as directional tools will disguise the fundamental aspect of these instru-
ments, namely that options are tools for tradingvolatility. The intuition behind these two views
of options is quite different, and we would like the reader to think like an option trader or
market maker.

This chapter intends to show that an option exposure, when fully put in place, is an impure
position on the way volatility is expected to change. A market maker with a netlong position
in options is someone who is “expecting” the volatility toincrease. A market maker who is
shortthe option is someone who thinks that the volatility of the underlying is going to decrease.
Sometimes such positions are taken as funding vehicles.

In this sense, a trader’s way of looking at puts and calls is in complete contrast to the
directional view of options. For example, market makers look at European calls and puts as
if they wereidentical objects. As we will see in this chapter, from an optionmarket maker’s
point of view, there is really no difference between buying a call or buying a put. Both of
these transactions, in the end, result in the same payoff. Consider Figure 8-1, where we show
two possible intraday trajectories of an underlying price,St. In one case prices are falling
rapidly, while in the other, prices are rising. An option trader will sell puts or calls with the same
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FIGURE 8-1

ease.As we will see, the trader may be concerned with whether he shouldsellorbuyany options,
rather thanwhichtype of option to sell.

In this chapter and the next, we intend to clarify the connection between volatility and option
prices. However, we first review some basics.

2. What Is an Option?

From a market practitioner’s point of view, options are instruments of volatility. Aretail investor
who owns a call on an asset,St, may feel that a persistent upward movement in the price of
this asset is “good” for him or her. But, a market maker who may be long in the same call may
prefer that the underlying priceSt oscillateas much as possible, asoftenas possible. The more
frequently and violently prices oscillate, the morelong (short) positions in option books will
gain (lose), regardless of whether calls or puts are owned.

The following reading is a good example as to how option traders look at options.

Example:

Wall Street firms are gearing up to recommend long single-stock vol positions on compa-
nies about to report earnings. While earnings seasons often offer opportunities for going
long vol via buying Calls or Puts, this season should present plenty of opportunities to
benefit from long vol positions given overall negative investor sentiment. Worse-than-
expected earnings releases from one company can send shockwaves through the entire
market.
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The big potential profit from these trades is from gamma, in other words, large moves in
the underlying, rather than changes in implied vol. One promising name . . .announced
in mid-February that manufacturing process and control issues have led to reduced sales
of certain products in the U.S., which it expected to influence its first quarter and full-year
sales and earnings. On Friday, options maturing in August had a mid-market implied
vol of around 43%, which implies a 2.75% move in the stock per trading day. Over the
last month, the stock has been moving on average 3% a day, which means that by buying
options on the company, you’re getting vol cheap. (Derivatives Week, April 1, 2001)

This reading illustrates several important characteristics of options. First, we clearly see that
puts and calls are considered as similar instruments by market practitioners. The issue is not to
buy puts or calls, but whether or not to buy them.

Second, and this is related to the first point, notice that market participants are concerned
with volatilities and not with the direction of prices—referring to volatility simply asvol.
Market professionals are interested in the difference betweenactualdaily volatilities of stock
prices and the volatilitiesimplied by the options. The last sentence in the reading is a good
(but potentially misleading) example of this. The reading suggests that optionsimply a daily
volatility of 2.75%, while theactualdaily volatility of the stock price is 3%. According to this,
options are considered “cheap,” since the actual underlying moves more than what the option
price implies on a given day.1 This distinction between implied volatility and “actual volatility”
should be kept in mind.

Finally, the reading seems to refer to two different types of gains from volatility. One,
from “large movements in the underlying price,” leads togamma gains, and the other, from
implied volatility, leads tovega gains. During this particular episode, market professionals were
expecting implied volatility to remain the same, while the underlying assets exhibited sizable
fluctuations. It is difficult, at the outset, to understand this difference. The present chapter will
clarify these notions and reconcile the market professional’s view of options with the directional
approach the reader may have been exposed to earlier.2

3. Options: Definition and Notation

Option contracts are generally divided into the categories ofplain vanilla andexotic options,
although many of the options that used to be known as exotic are vanilla instruments today. In
discussing options, it is good practice to start with a simple benchmark model, understand the
basics of options, and then extend the approach to more complicated instruments. This simple
benchmark will be a plain vanilla option treated within the framework of theBlack-Scholes
model.

The buyer of an option does not buy the underlying instrument; he or she buys aright. If
this right can be exercised only at the expiration date, then the option isEuropean. If it can be

1 This analysis should be interpreted carefully. In the option literature, there are many different measures of volatility.
As this chapter will show, it is perfectly reasonable that the two values be different, and this may not necessarily imply
an arbitrage possibility.

2 The previous example also illustrates a technical point concerning volatility calculations in practice. Consider
the waydaily volatility was calculated onceannualizedpercentage volatility was given. Suppose there are 246 trading
days in a year. Then, note that an annual percentage volatility of 43% is not divided by 246. Instead, it is divided by the
square rootof 246 to obtain the “daily” 2.75% volatility. This is known asthe square root rule, and has to do with the
role played by Wiener processes in modeling stock price dynamics. Wiener process increments have avariancethat is
proportional to the time that has elapsed. Hence, the standard deviation or volatility will be proportional to the square
root of the elapsed time.
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exercised any time during the specified period, the option is said to beAmerican. A Bermudan
option is “in between,” given that it can be exercised at more than one of the dates during the
life of the option.

In the case of a European plain vanilla call, the option holder has purchased the right to
“buy” the underlying instrument at a certain price, called thestrikeor exercise price, at a spe-
cific date, called theexpirationdate. In the case of the European plain vanilla put, the option
holder has again purchased the right to an action. The action in this case is to “sell” the underlying
instrument at the strike price and at the expiration date.

American style options can be exercised anytime until expiration and hence may be more
expensive. They may carry an early exercise premium. At the expiration date, options cease to
exist. In this chapter, we discuss basic properties of options using mostly plain vanilla calls.
Obviously, the treatment of puts would be similar.

3.1. Notation

We denote the strike prices by the symbolK, and the expiration date byT . The price or value
of the underlying instrument will be denoted bySt if it is a cash product, and byFt if the
underlying is a forward or futures price. The fair price of the call at timet will be denoted by
C(t), and the price of the put byP (t).3 These prices depend on the variables and parameters
underlying the contract. We useSt as the underlying, and write the corresponding call option
pricing functionas

C(t) = C(St, t|r, K, σ, T ) (1)

Here,σ is the volatility ofSt andr is the spot interest rate, assumed to be constant. In more
compact form, this formula can be expressed as

C(t) = C(St, t) (2)

This function is assumed to have the following partial derivatives:

∂C(St, t)
∂St

= Cs (3)

∂2C(St, t)
∂S2

t

= Css (4)

∂C(St, t)
∂t

= Ct (5)

More is known on the properties of these partials. Everything else being the same, ifSt increases,
the call option price,C(t), also increases. IfSt declines, the price declines. But the changes in
C(t) will never exceed those in the underlying asset,St. Hence, we should have

0 < Cs < 1 (6)

3 The way we characterize and handle the time index is somewhat different from the treatment up to this chapter.
Option prices are not written asCt andPt, as the notation of previous chapters may suggest. Instead, we use the notation
C(t) andP (t). The former notation will be reserved for the partial derivative of an option’s price with respect to timet.
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At the same time, everything else being the same, ast increases, the life of the option gets shorter
and the time-value declines,

Ct < 0 (7)

Finally, the expiration payoff of the call (put) option is a convex function, and we expect the
C(St, t) to be convex as well. This means that

0 < Css (8)

This information about the partial derivatives is assumed to be known even when the exact form
of C(St, t) itself is not known.

The notation in Equation (1) suggests that the partials themselves are functions ofSt, r, K,
t, T , and σ. Hence, one may envisage some further, higher-order partials. The traditional
Black-Scholesvanilla option pricing environment uses the partials,{Cs, Css, Ct} only. Further
partial derivatives are brought into the picture as the Black-Scholes assumptions are relaxed
gradually.

Figure 8-2 shows the expiration date payoffs of plain vanilla put and call options. In the
same figure we have the timet, t < T value of the calls and puts. These values trace a smooth
convex curve obtained from the Black-Scholes formula.

We now consider a real-life application of these concepts. The following example looks
at Microsoft optionstraded at the Chicago Board of Options Exchange, and discusses various
parameters within this context.

Call value

St

Call value  at t Call
payoff at T

K

Time value

Intrinsic value

A long call

C(St, t )

St0

St

Time-t value

Expiration
value

K

Time value

Intrinsic value

A long put

P(St , t )

Put value

FIGURE 8-2
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Example:

Suppose Microsoft (MSFT) is “currently” trading at 61.15 at Nasdaq. Further, the
overnight rate is 2.7%. We have the following quotes from the Chicago Board of Options
Exchange (CBOE).

In the table, the first column gives the expiration date and the strike level of the option.
The exact time of expiration is the third Friday of every month. These equity options in
CBOE are of American style. The bid price is the price at which the market maker is
willing to buy this option from the client, whereas the ask price is the price at which he
or she is willing to sell it to the client.

Calls Bid Ask Volume

Nov 55.00 7.1 7.4 78
Nov 60.00 3.4 3.7 6291
Nov 65.00 1.2 1.3 1456
Nov 70.00 0.3 0.4 98
Dec 55.00 8.4 8.7 0
Dec 60.00 5 5.3 29
Dec 65.00 2.65 2.75 83
Dec 70.00 1.2 1.25 284

Puts Bid Ask Volume

Nov 55.00 0.9 1.05 202
Nov 60.00 2.3 2.55 5984
Nov 65.00 5 5.3 64
Nov 70.00 9 9.3 20
Dec 55.00 2.05 2.35 10
Dec 60.00 3.8 4.1 76
Dec 65.00 6.3 6.6 10
Dec 70.00 9.8 10.1 25

Note: October 24, 2002, 11:02 A.M. data from CBOE.

CBOE option prices are multiplied by$100 and then invoiced. Of course, there are
some additional costs to buying and selling options due to commissions and possibly
other expenses. The last column of the table indicates the trading volume of the relevant
contract.

For example, consider the November 55 put. This option will be in-the-money, if the
Microsoft stock is below 55.00. If it stays so until the third Friday of November 2001,
the option will have a positive payoff at expiration.

100 such puts will cost

1.05 × 100 × 100 = $10,500 (9)

plus commissions to buy, and can be sold at

0.90 × 100 × 100 = $9,000 (10)

if sold at the bid price. Note that the bid-ask spread for one “lot” had a value of$1500
that day.

We now study option mechanics more closely and introduce further terminology.
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3.2. On Retail Use of Options

Consider aretail clientand anoption market makeras the two sides of the transaction. Suppose
a business uses the commoditySt as a production input, and would like to “cap” the priceST at
a future dateT . For this insurance, the business takes along position using call options onSt.
The call option premium is denoted byC(t). By buying the call, the client makes sure that he
or she can buy one unit of the underlying at amaximumpriceK, at expiration dateT . If at time
T, ST is lower thanK, the client will not exercise the option. There is no need to payK dollars
for something that is selling for less in the marketplace. The option will be exercised only ifST

equals or exceedsK at timeT .
Looked at this way, options are somewhat similar to standardinsuranceagainst potential

increases in commodities prices. In such a framework, options can be motivated asdirectional
instruments. One has the impression that an increase inSt is harmful for the client, and that the
call “protects” against this risk. The situation for puts is symmetrical. Puts appear to provide
protection against the risk of undesirable “declines” inSt. In both cases, a certain direction in
the change of the underlying priceSt is associated with the call or put, and these appear to be
fundamentally different instruments.

Figure 8-3 illustrates these ideas graphically. The upper part shows the payoff diagram for
a call option. Initially, at timet0, the underlying price is atSt0 . Note thatSt0 < K, and the
option isout-of-the-money. Obviously, this does not mean that the right to buy the asset at time
T for K dollars has no value. In fact, from aclient’s point of view, St may moveup during
intervalt ∈ [t0, T ] and end up exceedingK by timeT . This will make the optionin-the-money.
It would then be profitable to exercise the option and buy the underlying at a priceK. The option
payoff will be the differenceST − K, if ST exceedsK. This payoff can be shown either on the
horizontal axis or, more explicitly, on the vertical axis.4 Thus, looked at from theretail client’s
point of view, even at the price levelSt0 , the out-of-the money option is valuable, since itmay
become in-the-money later. Often, the directional motivation of options is based on these kinds
of arguments.

If the option expires atST = K, the option will beat-the-money(ATM) and the option holder
may or may not choose to receive the underlying. However, as the costs associated with delivery
of the call underlying are, in general,lessthan the transaction costs of buying the underlying in
the open market, some holders of ATM options prefer to exercise.

Hence, we get the typical price diagram for a plain vanilla European call option. The option
price for t ∈ [t0, T ] is shown in Figure 8-3 as a smooth convex curve that converges to the
piecewise linear option payoff as expiration timeT approaches. The vertical distance between
the payoff line and the horizontal axis is calledintrinsic value. The vertical distance between
the option price curve and the expiration payoff is called thetime valueof the option. Note that
for a fixedt, the time value appears to be at a maximum when the option is at-the-money—that
is to say, whenSt = K.

3.3. Some Intriguing Properties of the Diagram

Consider pointA in the top part of Figure 8-3. Here, at timet, the option isdeepout-of-the
money. TheSt is close to the origin and the time value is close to zero. The tangent at point
A has a positive slope that is little different from zero. The curve is almost “linear” and the
secondderivative is also close to zero. This means that for small changes inSt, the slope of the
tangent will not vary much.

4 As usual, the upward-sloping line in Figure 8-3 has slope +1, and thus “reflects” the profit,ST − K on the
horizontal axis, toward the vertical axis.
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Now, consider the case represented by pointB in Figure 8-3. Here, at timet, the option is
deep in-the-money.St is significantly higher than the strike price. However, the time value is
againclose to zero. The curve approaches the payoff line and hence has a slope close to+1.
Yet, the second derivative of the curve is once again very close to zero. This again means that
for small changes inSt, the slope of the tangent will not vary much.5

The third case is shown as pointC in the lower part of Figure 8-3. Suppose the option was
at-the-money at timet, as shown by pointC. The value of the option is entirely made of time
value. Also, the slope of the tangent is close to 0.5. Finally, it is interesting that thecurvature
of the option is highest at pointC and that ifSt changes a little, the slope of the tangent will
changesignificantly.

This brings us to an interesting point. The more convex the curve is at a point, the higher
the associated time value seems to be. In the two extreme cases where the slope of the curve is
diametrically different, namely at pointsA andB, the option has asmall time value. At both

5 That is, it will stay close to 1.
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points, thesecondderivative of the curve is small. When the curvature reaches its maximum,
the time value is greatest. The question, of course, is whether or not this is a coincidence.

Pursuing this connection betweentime valueandcurvaturefurther will lead us to valuing
the underlying volatility. Suppose, by holding an option, a market maker can somehow generate
“cash” earnings asSt oscillates. Could it be that, everything else being the same, the greater the
curvature ofC(t), the greater the cash earnings are? Our task in the next section is to show that
this is indeed the case.

4. Options as Volatility Instruments

In this section we see how convexity is translated into cash earnings, asSt oscillates and
creates time value.6 The discussion is conducted in a highlysimplifiedenvironment to facilitate
understanding of the relationship between volatility and cash gains (losses) of long (short)
option positions.

Consider amarket makerwho quotes two-way prices for a European vanilla call option
C(t), with strikeK, and expirationT , written on a nondividend paying asset, denoted bySt.7

Let the risk-free interest rater be constant. For simplicity, consider an at-the-money option,
K = St. In the following, we first show the initial steps taken by the market maker who buys
an option. Then, we show how the market maker hedges this position dynamically, and earns
some cash due toSt oscillations.

4.1. Initial Position and the Hedge

Suppose this market makerbuysa call option from a client.8 The initial position of the market
maker is shown in the top portion of Figure 8-4. It is a standardlong call position. The market
maker is not an investor or speculator, and this option is bought with the purpose of keeping it
on the books and then selling it to another client. Hence, some mechanical procedures should
be followed. First, the market maker needs tofundthis position. Second, he or she shouldhedge
the associated risks.

We start with the first requirement. Unlike the end investor, market makers never have
“money” of their own. The trade needs to befunded.There are at least two ways of doing this.
One is toshort an appropriate asset in order to generate the needed funds, while the other is
to borrow these funds directly from the money market desk.9 Suppose the second possibility is
selected and the market maker borrowsC(t) dollars from the money market desk at an interest
ratert = r. Thenetposition that puts together the option and the borrowed funds is shown in
the bottom part of Figure 8-4.

Now, consider the risks of the position. It is clear from Figure 8-4 that the long call posi- tion
funded by a money market loan is similar to going long theSt. If St decreases, the position’s
value will decrease, and a market maker who takes such positions many times on a given day
cannot afford this. The market maker must hedge this risk by taking another position that will
offset these possible gains or losses. WhenSt declines, ashort position inSt gains. AsSt

6 It is important to emphasize that this way of considering options is from an interbank point of view. For end
investors, options can still be interpreted as directional investments, but the pricing and hedging of options can only be
understood when looked at from the dealer’s point of view. The next chapter will present applications related to classical
uses of options.

7 Remember that market makers have the obligation to buy and sell at the prices they are quoting.

8 This means that the client has “hit” the bid price quoted by the market maker.

9 The market maker may also wait for some other client to show up and buy the option back. Market makers have
position limits and can operate for short periods without closing open positions.
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changes byΔSt, a short position will change by−ΔSt. Thus, we might think of using this short
position as a hedge.

But there is a potential problem. The long call position is described by acurve, whereas the
short position inSt is represented by aline. This means that the responses ofC(t) andSt, to
a change inSt, are not going to be identical. Everything else being the same, if the underlying
changes byΔSt, the change in the option price will beapproximately10

ΔC(t) ∼= CsΔSt, (11)

The change in the short position on the other hand will equal−ΔSt. In fact, the net response of
the portfolio

Vt = {long C(t), short St} (12)

10 Due to the assumption of everything else being the same, theΔSt andΔC(t) should be interpreted within the
context of partial differentiation.
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to a small change inSt, will be given by thefirst-orderapproximation,

ΔVt
∼= CsΔSt − ΔSt (13)

= (Cs − 1)ΔSt < 0 (14)

due to the condition0 < Cs < 1. This position is shown in Figure 8-5. It isstill a risky posi-
tion and, interestingly, the risks are reversed. The market maker will now lose money if theSt

increases. In fact, this position amounts to a long put financed by a money market loan.
How can the risks associated with the movements inSt be eliminated? In fact, consider

Figure 8-4. We can approximate the option value by using the tangent at pointSt = K. This
would also be a line. We can then adjust the short position accordingly. According to
equation (14), short-sellingone unit of St overdid the hedge. Figure 8-4 suggests that the
market maker should shortht units ofSt, selecting theht according to

ht =
∂C(St, t)

∂St
= Cs (15)
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To see why this might work, consider the new portfolio,Vt:

Vt = {long 1 unit of C(t), borrow C(t) dollars, short Cs units of St} (16)

If St changes byΔSt, everything else being the same, the change in this portfolio’s value will
be approximately

ΔVt
∼= [C(St + ΔSt, t) − C(St, t)] − CsΔSt (17)

We can use a first-order Taylor series approximation ofC(St + ΔSt, t), around pointSt, to
simplify this relationship:11

C(St + ΔSt, t) = C(St, t) +
∂C(St, t)

∂St
ΔSt + R (18)

Here,R is theremainder. The right-hand side of this formula can be substituted in equation (17)
to obtain

ΔVt
∼=

[
∂C(St, t)

∂St
ΔSt + R

]
− CsΔSt (19)

After using the definition

∂C(St, t)
∂St

= Cs (20)

and simplifying, this becomes

ΔVt
∼= R (21)

That is to say, this portfolio’s sensitivity toward changes inSt will be the remainder term,
R. It is related to Ito’s Lemma, shown in Appendix 8-2. The biggest term in the remainder is
given by

1
2

∂2C(St, t)
∂S2

t

(ΔSt)2 (22)

Since the second partial derivative ofC(t) is always positive, the portfolio’s value will always
bepositivelyaffected by small changes inSt. This is shown in the bottom part of Figure 8-6.
A portfolio such as this one is said to bedelta-neutral. That is to say, thedelta exposure, repre-
sented by the first-order sensitivity of the position to changes inSt, is zero. Notice that during
this discussion the time variable,t, was treated as a constant.

This way of constructing a hedge for options is calleddelta hedgingand theht is called
the hedge ratio. It is important to realize that the procedure will need constant updating of the
hedge ratio,ht, as time passes andSt changes. After all, the idea depends on a first-order Taylor
series approximation of a nonlinear instrument using a linear instrument. Yet, Taylor series
approximations arelocal and they are satisfactory only for a reasonable neighborhood around
the initial St. As St changes, the approximation needs to be adjusted. Consider Figure 8-7.
When St moves from pointA to point B, the approximation atA deteriorates and a new
approximation is needed. This new approximation will be the tangent at pointB.

11 Let f(x) be a continuous and infinitely differentiable function ofx. Thekth order Taylor series approximation
of f(x), at pointx0, is given by

f(x) = f(x0) + f ′(x0)(x − x0) +
1
2

f ′′(x0)(x − x0)2 + · · · +
1
k!

fk(x0)(x − x0)k

wherefk(x0) is thekth derivative off(.) evaluated atx = x0.
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4.2. Adjusting the Hedge over Time

We now consider what happens to thedelta-hedged position asSt oscillates. According to
our discussion in the previous chapter, as time passes, the replicating portfolio needs to be
rebalanced. This rebalancing will generate cash gains.

We discuss these portfolio adjustments in a highly simplified environment. Considering a
sequence of simple oscillations inSt aroundan initial pointSt0 = S0, let

t0 < t1 < · · · < tn (23)

with

ti − ti−1 = Δ (24)

denote successive time periods that are apartΔ units of time. We assume thatSt oscillates at
an annual percentage rate of one standard deviation,σ, aroundthe initial pointSt0 = S0. For
example, one possible round turn may be

S0 → (S0 + ΔS) → S0 (25)
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With ΔS = σS0
√

Δ, the percentage oscillations will be proportional to
√

Δ. The mechan-
ics of maintaining thedelta-hedged long call position will be discussed in this simplified
setting.

SinceSti moves between three possible values only, we simplify the notation and denote
the possible values ofSt by S−, S0, andS+, where12

S+ = S0 + ΔS (26)

S− = S0 − ΔS (27)

We now show how these oscillations generate cash gains. According to Figure 8-7, asSt fluc-
tuates, the slope,Cs, of theC(St, t) also changes. Ignoring the effect of time, the slope will
change, say, betweenC+

s , C0
s , andC−

s , as shown in Figure 8-7.13 We note that

C−
s < C0

s < C+
s (28)

for all ti. This means that asSt moves,ht, the hedge ratio will change in a particular way. In
order to keep the portfoliodelta-hedged, the market maker needs toadjustthe number of the
underlyingSt that was shorted.

12 We can represent this trajectory by a three-stateMarkov chainthat has the following probabilities:

P (S0|S+) = 1 P (S−|S0) =
1
2

P (S+|S0) =
1
2

P (S0|S−) = 1

whereS0 is the sorting value. If prices are atS+ or S− theyalwaysgo back toS0. FromS0, they can either go up
or down.

13 It is important to realize that these slopes also depend on timet, although, to simplify the notation, we are omitting
the time index here.
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Second, and unexpectedly, the hedge adjustments have a “nice” effect. WhenSt moves
fromS+ toS0 or fromS0 toS−, the market maker has todecreasethe size of the short position
in St. To do this, the market maker needs to “buy” back a portion of the underlying asset that
was originally shorted at a higher priceS0 or S+.

Accordingly, the market maker sells short when prices are high, and covers part of the
position when prices decline. This leads to cash gains.

Consider now what happens when the move is fromS0 toS+. The new slope,C+
s , is steeper

than the old,C0
s . This means that the market maker needs to shortmoreof theSt-asset at the

new price. When theSt moves back toS0, these shorts are covered atS0, which is lower
thanS+.

Thus, asSt oscillates aroundS0, the portfolio is adjusted accordingly, and the market maker
would automaticallysell high and buy low. At everyround turn, say,{S0, S+, S0}, which
takestwoperiods, the hedge adjustments will generate a cash gain equal to

(C+
s − C0

s )[(S0 + ΔS) − S0] = (C+
s − C0

s )ΔS (29)

Here, the(C+
s −C0

s ) represents the number ofSt-assets that were shorted after the price moved
from S0 to S+. Once the price goesbackto S0, the same securities are purchased at a lower
price. It is interesting to look at these trading gains as the time interval,Δ, becomes smaller and
smaller.

4.2.1. Limiting Form

As ΔS → 0, we can show an important approximation to the trading (hedging) gains

(C+
s − C0

s )ΔS (30)

The term(C+
s − C0

s ) is thechangein thefirst partial derivative ofC(St, t), asSt moves from
St0 to a new level denoted bySt0 + ΔS. We can convert the(C+

s − C0
s ) into arateof change

after multiplying and dividing byΔS:

(C+
s − C0

s )ΔS =
C+

s − C0
s

ΔS
(ΔS)2 (31)

As we letΔS go to zero, we obtain the approximation

C+
s − C0

s

ΔS
∼= ∂2C(St, t)

∂S2
t

(32)

Thus, theround-turn gains fromdelta-hedge adjustments shown in equation (29) can be
approximated as

(C+
s − C0

s )ΔS ∼= ∂2C(St, t)
∂S2

t

(ΔS)2 (33)

Per time unit gains are then half of this,

1
2

∂2C(St, t)
∂S2

t

(ΔS)2 (34)

These gains are only part of the potential cash inflows and outflows faced by the market maker.
The position has further potential cash flows that need to be described. This is done in the next
two sections.
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4.3. Other Cash Flows

We just showed that oscillations inSt generate positive cash flows if the market makerdelta-
hedges his or her long option position. Does this imply an arbitrage opportunity? After all, the
market maker did not advance any cash yet seems to receive cash spontaneously as long as
St oscillates. The answer is no. There arecoststo this strategy, and thedelta-hedged option
position isnot riskless.

1. The market maker funded his or her position with borrowed money. This means, that, as
time passes, aninterest costis incurred. For a period of lengthΔ, this cost will equal

rCΔ (35)

under the constant spot rate assumption. (We writeC(t), asC.)
2. The option hastime value, and as time passes, everything else being the same, the value

of the option will decline at therate

Ct =
∂C(St, t)

∂t
(36)

The option value will go down by

∂C(St, t)
∂t

Δ (37)

dollars, for eachΔ that passes.
3. Finally, the cash received from the short position generatesrStCsΔ dollars interest every

time periodΔ.

The trading gains and the costs can be put together to obtain an importantpartial differential
equation(PDE), which plays a central role in financial engineering.

4.4. Option Gains and Losses as a PDE

We now add all gains and costs per unit of timeΔ. The options’gains per time unit from hedging
adjustments is

1
2

∂2C(St, t)
∂S2

t

(ΔS)2 (38)

In case the processSt is geometric, the annual percentage variance will be constant and this can
be written as (see Appendix 8-2)

1
2
Cssσ

2S2
t Δ (39)

The rest of the argument will continue with the assumption of a constantσ.
Interest is paid daily on the funds borrowed to purchase the call. For every period of

lengthΔ, a long call holder will pay

rCΔ (40)

Another item is the interest earned from cash generated by shortingCs units ofSt:14

rCsStΔ (41)

14 If the underlying asset is not “cash” but a futures contract, then this item may drop.
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Adding these, we obtain the net cash gains (losses) from the hedged long call position
duringΔ:

1
2
Cssσ

2S2
t Δ + rCsStΔ − rCΔ (42)

Now, in order for there to be no arbitrage opportunity, this must be equal to the daily loss of
time value:

1
2
Cssσ

2S2
t Δ + rCsStΔ − rCΔ = −CtΔ (43)

We can eliminate the commonΔ terms, and obtain a very important relationship that some
readers will recognize as theBlack-Scholes partial differential equation:

1
2
Cssσ

2S2
t + rCsSt − rC + Ct = 0 (44)

Every PDE comes with some boundary conditions, and this is no exception. The call option
will expire at timeT , and the expirationC(ST , T ) is given by

C(ST , T ) = max[ST − K, 0] (45)

Solving this PDE gives the Black-Scholes equation. In most finance texts, the PDE derived
here is obtained from some mathematical derivation. In this section, we obtained the same PDE
heuristically from practical trading and arbitrage arguments.

4.5. Cash Flows at Expiration

The cash flows at expiration date have three components: (1) the market maker has to pay the
original loan if it is not paid off slowly over the life of the option, (2) there is the final option
settlement, and (3) there is the final payoff from the shortSt position.

Now, at an infinitesimally short time period,dt, before expiration, the price of the underlying
will be very close toST . Call it S−

T . The price curveC(St, t) will be very near the piecewise
linear option payoff. Thus, the hedge ratioh−

T = Cs will be very close to either zero, or one:

h−
T

∼=
{

1 S−
T > K

0 S−
T < K

(46)

This means that, at timeT , any potential gains from the long call option position will be equal
to losses on the shortSt position.

The interesting question is, how does the market maker manage to pay back the original loan
under these conditions? There is only one way. The only cash that is available is the accumulation
of (net) trading gains from hedge adjustments during[t, T ]. As long as equation (44) is satisfied
for everyti, the hedged long option position will generate enough cash to pay back the loan.
The option price,C(t), regarded this way is the discounted sum of all gains and losses from a
delta-hedged option position the trader will incur based onexpectedSt-volatility.

We will now consider a numerical example to our highly simplified discussion of how
realized volatility is converted into cash via an option position.

4.6. An Example

Consider a stock,St, trading at a price of 100. The stock pays no dividends and is known to
have a Black-Scholes volatility ofσ = 45% per annum. The risk-free interest rate is 4% and the
St is known to follow a geometric process, so that the Black-Scholes assumptions are satisfied.
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Amarket maker buys 100 plain vanilla, at-the-money calls that expire in 5 days. The premium
for one call is 2.13 dollars. This is the price found by plugging the above data into the Black-
Scholes formula. Hence, the total cash outlay is$213. There are no other fees or commissions.
The market maker borrows the$213, buys the call options, and immediately hedges the long
position by short selling an appropriate number of the underlying stock.

Example:

Suppose that during these 5 days the underlying stock follows the path:

{Day 1 = 100, Day 2 = 105, Day 3 = 100, Day 4 = 105, Day 5 = 100} (47)

What are the cash flows, gains, and losses generated by this call option that remain on
the market maker’s books?

1. Day 1: The purchase date
Current Delta: 51 (Found by differentiating the Black-Scholes formula with
respect toSt, plugging in the data and then multiplying by 100.)
Cash paid for the call options:$213
Amount borrowed to pay for the calls:$213
Amount generated by short selling 51 units of the stock:$5100. This amount
is deposited at a rate of4%.

2. Day 2: Price goes to 105
Current Delta: 89 (Evaluated atSt = 105, 3 days to expiration)
Interest on amount borrowed:213(.04)( 1

360 ) = $.02
Interest earned from deposit:5100(.04)( 1

360 ) = $.57 (Assuming no bid-ask
difference in interest rates.)
Short selling 38 units of additional stock to reach delta-neutrality which gen-
erate:38(105) = $3990.

3. Day 3: Price goes back to 100
Current Delta: 51
Interest on amount borrowed:213(.04)( 1

360 ) = $.02
Interest earned from deposits:(5100 + 3990)(.04)( 1

360 ) = $1.
Short covering 38 units of additional stock at 100 each, to reach delta neutrality
generates a cash flow of:38(5) = $190. Interest on these profits is ignored
to the first order of approximation.

4. Day 4: Price goes to 105
Current Delta: 98
Interest on amount borrowed:213(.04)( 1

360 ) = $.02
Interest earned from deposits:5100(.04)( 1

360 ) = $.57
Shorting 47 units of additional stock at 105 each, to reach delta neutrality
generates:47(105) = $4935.

5. Day 5: Expiration with ST = 100
Net cash generated from covering the short position:47(5) = $235 (There
were 98 shorts, covered at$100 each. 47 shorts were sold at$105, 51 shorts
at $100)
Interest on amount borrowed:213(.04)( 1

360 ) = $.02
Interest earned from deposits:(5100 + 4935)(.04)( 1

360 ) = $1.1. The option
expires at-the-money and generates no extra cash.

6. Totals
Total interest paid:4(.02) = $.08
Total interest earned:2(.57) + 1 + 1.1 = $3.24
Total cash earned from hedging adjustments:$235 + $190.
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Cash needed to repay the loan:$213
Total net profit ignoring interest on interest= $215.16.
A more exact calculation would take into account interest on interest earned
and the interest earned on the$190 for 2 days.

We can explain why total profit is positive. The path followed bySt in this example implies
a daily actual volatility of5%. Yet, the option was sold at an annual implied volatility of45%,
which corresponds to a “daily” percentage implied volatility of:

0.45

√
1

365
= 2.36% (48)

Hence, during the life of the option, theSt fluctuated more than what the implied volatility
suggested. As a result, the long convexity position had a net profit.

This example is, of course, highly simplified. It keeps implied volatility constant and the
oscillations occur around a fixed point. If these assumptions are relaxed, the calculations will
change.

4.6.1. Some Caveats

Three assumptions simplified notation and discussion in this section.

• First, we considered oscillations around afixedS0. In real life, oscillations will clearly
occur around points that themselves move. As this happens, the partial derivatives,Cs

andCss, will change in more complicated ways.
• Second,Cs andCss are also functions of timet, and as time passes, this will be another

source of change.
• The third point is more important. During the discussion, oscillations were kept constant

atΔS. In real life, volatility may change over time and be random as well. This would
not invalidate the essence of our argument concerning gains from hedge adjustments, but
it will clearly introduceanother riskthat the market maker may have to hedge against.
This risk is known asvegarisk.

• Finally, it should be remembered that the underlying asset did not make any payouts
during the life of the option. If dividends or coupons are paid, the calculation of cash
gains and losses needs to be adjusted accordingly.

These assumptions were made to emphasize the role of options as volatility instruments. Forth-
coming chapters will deal with how to relax them.

5. Tools for Options

The Black-Scholes PDE can be exploited to obtain the major tools available to an option trader
or market maker. First of these is theBlack-Scholes formula, which gives the arbitrage-free price
of a plain vanilla call (put) option under specific assumptions.

The second set of tools is made up of the “Greeks.” These measure the sensitivity of an
option’s price with respect to changes in various market parameters. The Greeks are essential in
hedging and risk managing options books. They are also used in pricing and in options strategies.

The third set of tools are ad hoc modifications of these theoretical constructs by market
practitioners. These modifications adapt the theoretical tools to the real world, making them
more “realistic.”
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5.1. Solving the Fundamental PDE

The convexity of option payoffs implies an arbitrage argument, namely that the expected net
gains (losses) fromSt oscillations are equal to time decay during the same period. This leads to
the Black-Scholes PDE:

1
2
Cssσ

2S2
t + rCsSt − rC + Ct = 0 (49)

with the boundary condition

C(T ) = max[ST − K, 0] (50)

Now, under some conditions partial differential equations can be solved analytically and a
closed-form formulacan be obtained. See Duffie (2001). In our case, with specific assumptions
concerning the dynamics ofSt, this PDE has such a closed-form solution. This solution is the
market benchmark known as the Black-Scholes formula.

5.2. Black-Scholes Formula

An introduction to the Black-Scholes formula first requires a good understanding of the under-
lying assumptions. Suppose we consider a plain vanilla call option written on a stock at timet.
The option expires at timeT > t and has strike priceK. It is of European style, and can be
exercised only at expiration dateT . Further, the underlying asset price and the related market
environment denoted bySt have the following characteristics:

1. The risk-free interest rate is constant atr.
2. The underlying stock price dynamics are described in continuous time by the stochastic

differential equation (SDE):15

dSt = μ(St)Stdt + σStdWt t ∈ [0, ∞) (51)

whereWt represents a Wiener process with respect to real-world probabilityP .16

To emphasize an important aspect of the previous SDE, the dynamics ofSt are
assumed to have a constantpercentagevariance during infinitesimally short intervals.
Yet, the drift component,μ(St)St, can be general and neednot be specified further.
Arbitrage arguments are used to eliminate theμ(St) and replace it with the risk-free
instantaneous spot rater in the previous equation.

3. The stock pays no dividends, and there are no stock splits or other corporate actions during
the period[t, T ].

4. Finally, there are no transaction costs and no bid-ask spreads.

15 Appendix 8-2 discusses SDEs further.

16 The assumption of a Wiener process implies heuristically that

Et[dWt] = 0

and that

Et[dWt]2 = dt

These increments are the continuous time equivalents of sequences of normally distributed variables. For a discussion
of stochastic differential equations and the Wiener process, see, for example, Øksendal (2003). Neftci (2000) provides
the heuristics.
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Under these assumptions, we can solve the PDE in equations (49) and (51) and obtain the
Black-Scholes formula:

C(t) = StN(d1) − Ke−r(T−t)N(d2) (52)

whered1, d2 are

d1 =
log

(
St

K

)
+

(
r + σ2

2

)
(T − t)

σ
√

T − t
(53)

d2 =
log

(
St

K

)
+

(
r − σ2

2

)
(T − t)

σ
√

T − t
(54)

TheN(x) denotes the cumulative standard normal probability:

N(x) =
∫ x

−∞

1√
2π

e− 1
2 u2

du (55)

In this formula,r, σ, T , andK are consideredparameters, since the formula holds in this version,
only when these components are kept constant.17 ThevariablesareSt andt. The latter is allowed
to change during the life of the option.

Given this formula, we can take the partial derivatives of

C(t) = C(St, t|r, σ, T, K) (56)

with respect to the variablesSt andt andwith respect to the parametersr, σ, T , andK. These
partials are theGreeks. They represent the sensitivities of the option price with respect to a small
variation in the parameters and variables.

5.2.1. Black’s Formula

The Black-Scholes formula in equation (52) is the solution to the fundamental PDE whendelta
hedging is done with the “cash” underlying.As discussed earlier, trading gains and funding costs
lead to the PDE:

rCsSt − rC +
1
2
Cssσ

2S2
t = −Ct (57)

with the boundary condition:

C(ST , T ) = max[ST − K, 0] (58)

When the underlying becomes aforwardcontract, theSt will become the corresponding forward
price denoted byFt and the Black-Scholes PDE will change slightly.

Unlike a cash underlying, buying and selling a forward contract does not involve funding.
Long and short forward positions arecommitmentsto buy and sell at a future dateT , rather
than outright purchases of the underlying asset. Thus, the only cash movements will be interest
expense for funding the call, and cash gains from hedge adjustments. This means that the
corresponding PDE will look like

−rC +
1
2
Cssσ

2F 2
t = −Ct (59)

17 The volatility of the underlying needs to be constant during the life of the option. Otherwise, the formula will not
hold, even though the logic behind the derivation would.
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with the same boundary condition:

C(FT , T ) = max[FT − K, 0] (60)

whereFt is now the forward price of the underlying.
The solution to this PDE is given by the so-calledBlack’s formulain the case where the

options are of European style.

C(Ft, t)Black = e−r(T−t) [FtN(d1) − KN(d2)] (61)

with

dBlack
1 =

log Ft

K + 1
2σ2(T − t)

σ
√

(T − t)
(62)

dBlack
2 = dBlack

1 − σ
√

(T − t) (63)

Black’s formula is useful in many practical circumstances where the Black-Scholes formula
cannot be applied directly. Interest rate derivatives such as caps and floors, for example, are
options written on Libor rates that will be observed at future dates. Such settings lend themselves
better to the use of Black’s formula. The underlying risk is aforwardinterest rate such asforward
Libor, and the related option prices are given by Black’s formula. However, the reader should
remember that in the preceding version of Black’s formula the spot rate is taken as constant. In
Chapter 15 this assumption will be relaxed.

5.3. Other Formulas

The Black-Scholes type PDEs can be solved for a closed-form formula under somewhat differ-
ent conditions as well. These operations result in expressions that are similar but contain further
parameters and variables. We consider two cases of interest. Our first example is achooser
option.

5.3.1. Chooser Options

Consider a vanilla put,P (t) and a vanilla call,C(t) written onSt with strikeK, and expiration
T . A chooser option then is an option that gives the right to choose betweenC(t) andP (t) at
some later dateT0. Its payoffat timeT0, with T0 < T is

Ch(T0) = max[C(ST0 , T0), P (ST0 , T0)] (64)

Arbitrage arguments lead to the equality

P (ST0 , T0) = −(ST0 − Ke−r(T−T0)) + C(ST0 , T0) (65)

Using this, (64) can be written as

Ch(T0) = max[C(ST0 , T0), −(ST0 − Ke−r(T−T0)) + C(ST0 , T0)] (66)

or, taking the common term out,

Ch(T0) = C(ST0 , T0) + max[−(ST0 − Ke−r(T−T0)), 0] (67)

In other words, the chooser option payoff is either equal to the value of the call at timeT0, or it
is that plus a positive increment, in the case that

(ST0 − Ke−r(T−T0)) < 0 (68)



5. Tools for Options 225

But, this is equal to the payoff of a put with strike priceKe−r(T−T0) and exercise dateT0. Thus,
the pricing formula for the chooser option is given by

Ch(t) = [StN(d1) − Ke−r(T−t)N(d2)] + [−StN(−d̄1) + Ke−r(T−T0)e−r(T0−t)N(−d̄2)]
(69)

Simplifying:

Ch(t) = [St(N(d1) − N(−d̄1))] + Ke−r(T−t)(N(−d̄2) − N(d2)) (70)

with

d1,2 =
ln St

K +
(
r ± 1

2σ2
)
(T − t)

σ
√

(T − t)
(71)

d̄1,2 =
ln St

K + (r(T − t) ± 1
2σ2(T0 − t))

σ
√

(T0 − t)
(72)

A more interesting example from our point of view is the application of the Black-Scholes
approach to barrier options, which we consider next.

5.3.2. Barrier Options

Barrier options will be treated in detail in the next chapter. Here we just define these instru-
ments, and explain the closed form formula that is associated with them under some simplifying
assumptions. This will close the discussion of the application spectrum of Black-Scholes type
formulas.

Consider a European vanilla call, written onSt, with strikeK and expirationT, t < T .
Assume thatSt satisfies all Black-Scholes assumptions. Consider abarrier H, and assume that
H < St < K as of timet. Suppose we write a contract stipulating that if, during the life of the
contract,[t, T ], St falls below the levelH, the option disappears and the option writer will
have no further obligation. In other words, as long asH < Su, u ∈ [t, T ], the vanilla option is in
effect, but as soon asSu falls belowH, the option dies. This is abarrier option—specifically a
down-and-outbarrier. Two examples are shown in Figure 8-8a.

The pricing formula for the down-and-out call is given by

Cb(t) = C(t) − J(t) for H ≤ St
(73)

Cb(t) = 0 for St < H

Here theC(t) is the value of the vanilla call, which is given by the standard Black-Scholes
formula, and where theJ(t) is the discount that needs to be applied because the option may die
if St falls belowH during[t, T ]. See Figure 8-8b. The formula forJ(t) is

J(t) = St

(
H

St

) 2(r− 1
2 σ2)

σ2 +2

N(c1) − Ke−r(T−t)
(

H

St

) 2(r− 1
2 σ2)

σ2

N(c2) (74)

where

c1,2 =
log H2

StK
+ (r ± 1

2σ2)(T − t)

σ
√

T − t
(75)

It is interesting to note that whenSt touches the barrier

St = H (76)
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the formula forJ(t) becomes

J(t) = StN(d1) − Ke−r(T−t)N(d2) (77)

That is to say, the value ofCb(t) is zero:

Cb(t) = C(t) − C(t) (78)

This characterization of a barrier option as a standard option plus or minus a discount term is
very useful from a financial engineering angle. In the next chapter, we will obtain some simple
contractual equations for barriers, and the use of discounts will then be useful for obtaining
Black-Scholes type formulas for other types of barriers.

5.4. Uses of Black-Scholes-Type Formulas

Obviously, the assumptions underlying the derivation of the Black-Scholes formula are quite
restrictive. This becomes especially clear from the way we introduced options in this book. In
particular, if options are used to bet on the direction of volatility, then how can the assumption
of constant percentage volatility possibly be satisfied? This issue will be discussed further in
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later chapters where the way market professionals use the Black-Scholes formula while trading
volatility is clarified.

When the underlying asset is an interest rate instrument or a foreign currency, some of the
Black-Scholes assumptions become untenable.18 Yet, when these assumptions are relaxed, the
logic used in deriving the Black-Scholes formula may not result in a PDE that can be solved for
a closed-form formula.

Hence, a market practitioner may want to use the Black-Scholes formula or variants of it,
and then adjust the formula in some ad hoc, yet practical, ways. This may be preferable to
trying to derive new complicated formulas that may accommodate more realistic assumptions.
Also, even though the Black-Scholes formula does not hold when the underlying assumptions
change, acting as if the assumptions hold yields results that are surprisingly robust.19 We will
see that this is exactly what happens when traders adjust the volatility parameter depending on
the “moneyness” of the option under consideration.

18 For example, a foreign currency pays foreign interest. This is like an underlying stock paying dividends.

19 See for example, El-Karouiet al.
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This completes our brief discussion of the first set of tools that are essential for option
analysis, namely Black-Scholes types closed-form formulas that give the arbitrage-free price of
an option under some stringent conditions. Next, we discuss the second set of tools that traders
and market makers routinely use: various sensitivity factors called the “Greeks.”

6. The Greeks and Their Uses

The Black-Scholes formula gives the value of a vanilla call (put) option under some specific
assumptions. Obviously, this is useful for calculating the arbitrage-free value of an option. But
a financial engineer needs methods for determining how the option premium,C(t), changes
as the variables or the parameters in the formula change within the market environment. This
is important since the assumptions used in deriving the Black-Scholes formulaare unrealistic.
Traders, market makers, or risk managers must constantly monitor the sensitivity of their option
books with respect to changes inSt, r, t, or σ. The role of Greeks should be well understood.

Example:

A change inσ is a good example. We motivated option positions essentially (but not fully)
as positions taken on volatility. It is clear that volatility is not constant as assumed in
the Black-Scholes world. Once an option is bought and delta-hedged, the hedge ratio
Cs and theCss both depend on the movements in the volatility parameterσ.

Hence, the “hedged” option position will still be risky in many ways. For example,
depending on the way changes inσ and St affect theCss, a market maker may be
correct in his or her forecast of how muchSt will fluctuate, yet may still lose money on
a long option position.

A further difficulty is that option sensitivities may not be uniform across the strike priceK
or expirationT . For options written on thesameunderlying, differences inK andT lead to
what are calledsmile effectsandterm structure effects, respectively, and should be taken into
account carefully.

Option sensitivity parameters are called the “Greeks” in the options literature. We discuss
them next and provide several practical examples.

6.1. Delta

Consider the Black-Scholes formulaC(St, t|r, σ, T, K). How much would this theoretical price
change if the underlying asset price,St, moved by an infinitesimal amount?

One theoretical answer to this question can be given by using the partial derivative of the
function with respect toSt. This is by definition thedeltaat timet:

delta =
∂C(St, t|r, σ, T, K)

∂St
(79)

This partial derivative was denoted byCs earlier. Note thatdelta is the local sensitivity of the
option price to an infinitesimal change inSt only, which incidentally is the reason behind using
partial derivative notation.

To get some intuition on this, remember that the price curve for a long call has an upward
slope in the standardC(t), St space. Being the slope of the tangent to this curve, thedeltaof
a long call (put) is always positive (negative). The situation is represented in Figure 8-9. Here,
we consider three outcomes for the underlying asset price represented bySA, SB , andSC and
hence obtain three points,A, B, andC, on the option pricing curve. At each point, we can draw
a tangent. The slope of this tangent corresponds to thedeltaat the respective price.
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• At pointC, the slope, and hence, thedeltais close to zero, since the curve is approaching
the horizontal axis asSt falls.

• At pointB, thedeltais close to one, since the curve is approaching a line with slope+1.
• At point A, thedelta is in the “middle,” and the slope of the tangent is between zero

and one.

Thus, we always have0 < delta < 1 in case of a long call position. As mentioned earlier,
when the option is at-the-money (ATM), thedelta is close to.5.

6.1.1. Convention

Market professionals do not like to use decimal points. The convention in option markets is
to think about trading, not one, but 100 options, so that thedelta of option positions can be
referred to in whole numbers, between 0 and 100. According to this convention, thedeltaof an
ATM option is around 50. A 25-deltaoption would be out-of-the-money and a 75-deltaoption
in-the-money. Especially in FX markets, traders use this terminology to trade options.

Under these conditions, an options trader may evaluate his or her exposure usingdelta
points.Atrader may belong delta, which means that the position gains if the underlying increases,
and loses if the underlying decreases. Ashort deltaposition implies the opposite.

6.1.2. The Exact Expression

The partial derivative in equation (79) can be taken in case the call option is European and the
price is given by the Black-Scholes formula. Doing so, we obtain thedelta of this important
special case:

∂C(St, t|r, σ, T, K)
∂St

=
∫ (T−t)(r+ 1

2 σ2)+log(St/K)√
(T−t)σ

−∞

1√
2π

e− 1
2 x2

dx (80)

= N(d1)

This derivation is summarized in Appendix 8-1. It is shown that thedelta is itself a function
that depends on the “variables”St, K, r, σ, and on the remaining life of the option,T − t. This
function is in the form of aprobability. Thedeltais between 0 and 1, and the function will have
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the familiarS-shape of a continuous cumulative distribution function (CDF). This, incidentally,
means that the derivative of thedeltawith respect toSt, which is calledgamma, will have the
shape of a probabilitydensityfunction (PDF).20 A typical deltawill thus look like the S-shaped
curve shown in Figure 8-10.

We can also see from this formula how various movements in market variables will affect
this particular option sensitivity. The formula shows that whatever increases the ratio

log(St/K) + (r + 1
2σ2)(T − t)

σ
√

T − t
(81)

will increase thedelta; whatever decreases this ratio, will decrease thedelta.
For example, it is clear that asr increases, thedelta will increase. On the other hand, a

decrease in the moneyness of the call option, defined as the ratio

St

K
(82)

decreases thedelta. The effect of volatility changes is more ambiguous and depends on the
moneyness of the option.

Example:

We calculate the delta for some specific options. We first assume the Black-Scholes
world, even though the relevant market we are operating in may violate many of the
Black-Scholes assumptions. This assumes, for example, that the dividend yield of the
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20 Some traders use thedeltaof a particular option as if it is the probability of being in-the-money. This could be
misleading.



6. The Greeks and Their Uses 231

underlying is zero and this assumption may not be satisfied in real life cases. Second,
we differentiate the functionC(t)

C(t) = StN(d1) − Ke−r(T−t)N(d2) (83)

where thed1 andd2 are as given in equations (53) and (54), with respect toSt. Then,
we substitute values observed forSt, K, r, σ, (T − t).

Suppose the Microsoft December calls and puts shown in the table from our first exam-
ple in this chapter satisfy these assumptions. The deltas can be calculated based on the
following parameter values:

St = 61.15, r = .025, σ = 30.7%, T − t = 58/365 (84)

Here,σ is the implied volatility obtained by solving the equation forK = 60,

C(61.15, 60, .025, 58/365, σ) = Observed price (85)

Plugging the observed data into the formula for delta yields the following values:

Calls Delta

Dec 55.00 .82
Dec 60.00 .59
Dec 65.00 .34
Dec 70.00 .16

Puts Delta

Dec 55.00 −.17
Dec 60.00 −.40
Dec 65.00 −.65
Dec 70.00 −.84

We can make some interesting observations:

1. The ATM calls and puts have the same price.
2. Their deltas, however, are different.
3. The calls and puts that are equally far from the ATM have slightly different deltas

in absolute value.

According to the last point, if we consider 25-delta calls and puts, they will not be exactly
the same.21

We now point out to somequestionableassumptions used in our example. First, in calcu-
lating thedeltasfor various strikes, we always used thesamevolatility parameterσ. This is
not a trivial point. Options that are identical in every other aspect, except for their strikeK,
mayhave different implied volatilities. There may be avolatility smile. Using the ATM implied

21 We ignore the fact that these CBOE equity options are American.
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volatility in calculating thedeltaof all options may not be the correct procedure. Second, we
assumed a zero dividend yield, which is not realistic either. Normally, stocks have positive
expected dividend yields and some correction for this should be made when option prices and
the relevant Greeks are calculated. A rough way of doing it is to calculate an annual expected
percentage dividend yield and subtract it from the risk-free rater. Third, should we useSt

or a futures market equivalent, in case this latter exists, thedelta evaluated in the futures or
forward price may be more desirable.

6.2. Gamma

Gammarepresents the rate of change of thedeltaas the underlying riskSt changes. Changes in
deltawere seen to play a fundamental role in determining the price of a vanilla option. Hence,
gammais another important Greek. It is given by the second partial derivative ofC(St, t) with
respect toSt:

gamma =
∂2C(St, t|r, σ, T, K)

∂S2
t

(86)

We can easily obtain the exact expression forgammain the case of a European call. The deri-
vation in Appendix 8-1 gives

∂2C(St, t|r, σ, T, K)
∂S2

t

=
1

Stσ
√

T − t

⎡
⎢⎣ 1√

2π
e

− 1
2

(
log(S

k )+r(T −t)+ 1
2 σ2(T −t)

σ
√

T −t

)2

du

⎤
⎥⎦ (87)

Gammashows how much thedelta hedge should be adjusted asSt changes. Figure 8-11
illustrates thegammafor the Black-Scholes formula. We see the already-mentioned property.
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Gammais highest if the option is at-the-money, and approaches zero as the option becomes
deep in-the-moneyor out-of-the-money.

We can gain some intuition on the shape of thegammacurve. First, remember thatgamma
is, in fact, the derivative ofdelta with respect toSt. Second, remember thatdelta itself had
the shape of acumulativenormal distribution. This means that the shape ofgammawill be
similar to that of a continuous, bell-shaped probabilitydensityfunction, as expression (87)
indicates.

Consider now a numerical example dealing withgammacalculations. We use the same data
utilized earlier in the chapter.

Example:

To calculate the gamma, we use the same table as in the first example in the chapter.
We take the partial derivative of the delta with respect toSt. This gives a new function
St, K, r, σ, (T − t), which measures the sensitivity of delta to the underlyingSt. We then
substitute the observed values forSt, K, r, σ, (T − t) to obtain gamma at that particular
point.

For the Microsoft December calls and puts shown in the table, gammas are calculated
based on the parameter values

St = 60.0, r = .025, σ = .31%, T − t = 58/365, k = 60 (88)

whereσ is the implicit volatility.

Again we are using the implicit volatility that corresponds to the ATM option in calcu-
lating the delta of all options, in-the-money or out.

Plugging the observed data into the formula for gamma yields the following values:

Calls Gamma

Dec 55.00 .034
Dec 60.00 .053
Dec 65.00 .050
Dec 70.00 .032

Puts Gamma

Dec 55.00 .034
Dec 60.00 .053
Dec 65.00 .050
Dec 70.00 .032

The following observations can be made:

1. The puts and calls with different distance to the ATM strike have gammas that are
alike but not exactly symmetric.

2. Gamma is positive if the market maker is long the option; otherwise it is negative.

It is also clear from this table that gamma is highest when we are dealing with an ATM
option.
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Finally, we should mention that as time passes, the second-order curvature of ATM options
will increase as thegammafunction becomes more peaked and its tails go toward zero.

6.2.1. Market Use

We must comment on the role played bygammain option trading. We have seen that long
deltaexposures can be hedged by going short using the underlying asset. But, how aregamma
exposures hedged? Traders sometimes find this quite difficult. Especially in very short-dated,
deep out-of-the-money options,gammacan suddenly go from zero to very high values and may
cause significant losses (or gains).

Example:

The forex option market was caught short gamma in GBP/EUR last week. The spot rate
surged from GBP0.6742 to GBP0.6973 late the previous week, one-month volatilities
went up from about 9.6% to roughly 13.3%. This move forced players to cover their
gamma. (A typical market quote.)

This example shows one waydeltaandgammaare used by market professionals. Especially in the
foreign exchange markets, options of varying moneyness characteristics are labeled according
to theirdelta. For example, consider 25-deltaSterling puts. Given that an at-the-money put has
a delta of around 50, these puts are out-of-the-money. Market makers had sold such options
and, after hedging theirdeltaexposure, were holding shortgammapositions. This meant that as
the Sterling-Euro exchange rate fluctuated, hedge adjustments led to higher than expected cash
outflows.

6.3. Vega

A critical Greek is thevega. How much will the value of an option change if the volatility
parameter,σ, moves by an infinitesimal amount? This question relates to an option’s sensitivity
with respect to implied volatility movements.Vegais obtained by taking the partial derivative
of the function with respect toσ:

vega =
∂C(St, t|r, σ, T, K)

∂σ
(89)

An example ofvega is shown in Figure 8-12 for a call option. Note the resemblance to the
gammadisplayed earlier in Figure 8-11. According to this figure, thevegais greatest when the
option is at-the-money. This implies that if we use the ATM option as a vehicle to benefit from
oscillations inSt, we will also have maximum exposure to movements in the implied volatility.
We consider some examples ofvegacalculations using actual data.

Example:

Vega is the sensitivity with respect to the percentage volatility parameter,σ, of the option.
According to the convention, this is calculated using the Black-Scholes formula. We
differentiate the formula with respect to the volatility parameterσ.

Doing this and then substituting

C(61.15, .025, 60, 58/365, σ) = Observed price (90)

we get a measure of how this option’s prices will react to small changes inσ.
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For the table above, we get the following results:

Calls Vega($)

Dec 55.00 6.02
Dec 60.00 9.4
Dec 65.00 8.9
Dec 70.00 5.6

Puts Vega($)

Dec 55.00 6.02
Dec 60.00 9.4
Dec 65.00 8.9
Dec 70.00 5.6

We can make the following comments:

1. At-the-money options have the largest values of vega.
2. As implied volatility increases, the ATM vega changes marginally, whereas the out-

of-the-money and in-the-money option vegas do change, and in the same direction.

Option traders can use thevegain calculating the “new” option price in case implied volatil-
ities change by some projected amount. For example, in the preceding example, if the implied
volatility increases by 2 percentage points, then the value of the Dec 60-put will increase approx-
imately by 0.19, everything else being the same.
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6.3.1. Market Use

Vegais an important Greek because it permits market professionals to keep track of their exposure
to changes in implied volatility. This is important, since the Black-Scholes formula is derived in
a framework where volatility is assumed to be constant, yet used in an environment where the
volatility parameter,σ, changes. Market makers often quote theσ directly, instead of quoting the
Black-Scholes value of the option. Under these conditions,vegacan be used to track exposure
of option books to changes in theσ. This can be followed byvega hedging.

The following reading is one example of the use ofvegaby the traders.

Example:

Players dumped USD/JPY vol last week in a quiet spot market, causing volatilities to
go down further. One player was selling USD1 billion in six-month dollar/yen options
in the market. These trades were entered to hedge vega exposure. The drop in the vols
forced market makers to hedge exotic trades they had previously sold.

According to this reading, some practitioners werelongvolatility. They had bought options
when the dollar-yen exchange rate volatility was higher.They facedvega risk. If implied volatility
declined, their position would lose value at a rate depending on the position’svega. To cover
these risky positions, they sold volatility and caused further declines in this latter. The size of
vegais useful in determining such risks faced by such long or short volatility positions.

6.3.2. Vega Hedging

Vegais the response of the option value to a change in implied volatility. In a liquid market,
option traders quote implied volatility and this latter continuously fluctuates. This means that
the value of an existing option position also changes as implied volatility changes. Traders who
would like to eliminate this exposure usevega hedgingin making their portfoliovega-neutral.
Vegahedging in practice involves buying and selling options, since only these instruments have
convexity and hence, havevega.

6.4. Theta

Next, we ask how much the theoretical price of an option would change if a small amount of
time,dt, passes. We use the partial derivative of the function with respect to time parametert,
which is calledtheta:

theta =
∂C(St, t|r, σ, T, K)

∂t
(91)

According to this,thetameasures the decay in the time value of the option. The intuition behind
thetais simple. As time passes, one has less time to gain from futureSt oscillations. Option’s
time value decreases. Thus, we must havetheta < 0.

If the Black-Scholes assumptions are correct, we can calculate this derivative analytically
and plot it. The derivative is represented in Figure 8-13. We see that, all else being the same, a
plain vanilla option’s time value will decrease at a fasterrateas expiration approaches.

6.5. Omega

This Greek relates toAmerican options only and is an approximate measure developed by market
professionals to measure the expected life of an American-style option.
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6.6. Higher-Order Derivatives

The Greeks seen thus far are not the only sensitivities of interest. One can imagine many other
sensitivities that are important to market professionals and investors. In fact, we can calculate
the sensitivity of the previously mentioned Greeksthemselveswith respect toSt, σ, t, andr.
These are higher-order cross partial derivatives and under some circumstances will be quite
relevant to the trader.

Two examples are as follows. Consider thegammaof an option. This Greek determines how
much cash can be earned as the underlyingSt oscillates. But the value of thegammadepends on
theSt andσ as well. Thus, agamma tradermay be quite interested in the following sensitivities:

∂ gamma

∂St

∂ gamma

∂σ
(92)

These two Greeks are sometimes referred to as thespeedandvolga, respectively. It is obvious
that the magnitude of these partials will be useful in determining the risks and gains ofgamma
positions. Exotic optiondeltasand gammasmay have discontinuities, and such high-order
moments may be very relevant.

Another interesting Greek is the derivative ofvegawith respect toSt:

∂ vega

∂St

(93)
∂ vega

∂σ
= volga

This derivative is of interest to avega trader. In a sense, this is volatilitygamma, hence the
name. Similarly, the partial derivative of all important Greeks with respect to a small change in
time parameter may provide information about the way the Greeks move over time.
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6.7. Greeks and PDEs

The fundamental Black-Scholes PDE that we derived in this chapter can be reinterpreted using
the Greeks just defined. In fact, we can plug the Greeks into the Black-Scholes PDE

1
2
Cssσ

2S2
t + rCsSt − rC + Ct = 0 (94)

and recast it as

1
2

gamma σ2S2
t + r delta St − rC + theta = 0 (95)

In this interpretation, being long in options means, “earning”gammaand “paying”theta.
It is also worth noting that the higher order Greeks mentioned in equations (92) and (93)

arenot present in equation (95). This is because they are second order Greeks. The first order
Greeks are related to changes in the underlying riskΔSt, Δσ or timeΔ, whereas the higher order
Greeks would relate to changes that will have sizes given by the products(ΔStΔσ) or (ΔσΔ).
In fact, whenΔSt, Δσ, Δ are “small” but nonnegligible, products of two small numbers such
as(ΔStΔσ) are even smaller and negligible,dependingon the sizes of incremental changes in
St, or volatility.22

In some real life applications, when volatility “spikes,” higher order Greeks may become
relevant. Yet, in theoretical models with standard assumptions, whereΔ → 0, they fall from the
overall picture, and do not contribute to the PDE in equation (94).

6.7.1. Gamma Trading

The Black-Scholes PDE can be used to explain what agamma traderintends to accomplish.
Assume that the real-lifegammais correctly calculated by choosing a formula forC(St, t|r, K,
σ, T ) and then taking the derivative:

gamma =
∂2C(St, t|r, K, σ, T )

∂S2
t

. (96)

Following the logic that led to the Black-Scholes PDE in equation (94), agammatrader would,
first, form asubjective viewon the size of expected changes in the underlying using some
subjective probabilityP ∗, as of timet0 < t. The gains can be written as,23

EP ∗
t0

[
1
2
gamma (ΔSt)2

]
(97)

This term would be greater, the greater the oscillations inSt. Then these gains will be compared
with interest expenses and the loss of time value. If the expectedgammagains are greater than
these costs, then thegammatrader will golong gamma. If, in contrast, the costs are greater, the
gammatrader will prefer to beshort gamma.

There are at least two important comments that need to be made about tradinggammas.

6.7.2. Gamma Trading versus Vega

First of all, thegammaof an option position depends on the implied volatility parameterσ.
This parameter represents implied volatility. It neednothave the same value as the (percentage)

22 The Wiener process has variancedt over infinitesimal intervals, hencegammarelates to first order changes.

23 Thegammaitself depends onSt, so it needs to be kept inside the expectation operator.
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oscillations anticipated by agammatrader. In fact, agammatrader’s subjective (expected) gains,
due toSt oscillations, are given by

EP ∗
t0

[
1
2
gamma (ΔSt)2

]
(98)

There is no guarantee that the implied volatility parameter will satisfy the equality

σ2S2
t ΔEt0 [gamma] = EP ∗

t0

[
gamma (ΔSt)2

]
(99)

This iseven ifthe trader is correct in his or her anticipation. The right-hand side of this expres-
sion represents the anticipated (percentage) oscillations in the underlying asset that depend on
a subjective probability distribution, whereas the left-hand side is the volatility value that is
plugged into the Black-Scholes formula to get the option’s fair price.

Thus, agammatrader’s gains and losses also depend on the implied volatility movements, and
the option’svegawill be a factor here. For example, agammatrader may be right about increased
real-world oscillations, but, may still lose money ifimplied volatility, σ, falls simultaneously.
This will lower the value of the position if

∂Css

∂σ
< 0 (100)

The following reading illustrates the approaches a trader or risk manager may adopt with
respect tovegaandgammarisks.

Example:

The VOLX contracts, (one) the new futures based on the price volatility of three reference
markets measured by the closing levels of the benchmark cash index. The three are the
German (DAX), UK (FT-SE), and Swedish (OMX) markets.

The designers argue that VOLX products, by creating a term structure of volatility that
is arbitrageable, offer numerous hedging and trading possibilities. This covers both
vega and gamma exposures and also takes in the long-dated options positions that are
traditionally very difficult to hedge with short options.

Simply put, option managers who have net short positions and therefore are exposed to
increases in volatility, can hedge those positions by being long the VOLX contract. The
reverse is equally true. As a pure form of vega, the contracts offer particular benefits for
vega hedging. Their vega profile is constant for any level of spot ahead of the rate setting
period, and then diminishes linearly once the RSP has begun.

The gamma of VOLX futures, in contrast, is very different from those of traditional
options. Although a risk manager would traditionally hedge an option position by using
a product with a similar gamma profile, hedging the gamma of a complex book with
diversified strikes can become unwieldy. VOLX gamma, regardless of time and the level
of the underlying spot, is evenly distributed. VOLX will be particularly useful for the tra-
ditionally hard to hedge out-of-the-money wings of an option portfolio. (IFR, November
23, 1996)
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6.7.3. Which Expectation?

We characterized trading gains expected fromSt-oscillations using the expression:

EP∗
t0

[
1
2
gamma (ΔSt)2

]
(101)

Here the expectationEP ∗
t0 [(ΔSt)2] is taken with respect to subjective probability distribution

P ∗. The behavior ofgammatraders depends on their subjective probability, but the market-
determined arbitrage-free price will be objective and the corresponding expectation has to be
arbitrage-free. The corresponding pricing formulas will depend on objectiverisk-adjusted prob-
abilities.

7. Real-Life Complications

In actual markets, the issues discussed here should be applied with care, because there will be
significant deviations from the theoretical Black-Scholes world. Byconvention, traders consider
the Black-Scholes world as the benchmark to use, although its shortcomings are well known.

Every assumption in the Black-Scholes world can be violated. Sometimes these deviations
are harmless or can easily be accommodated by modifying the formula. Some such modifications
of the formula would be minor, and others more significant, but in the end they take care of the
problem at a reasonable effort.

Yet, there are two cases that require substantial modifications. The first concerns the behav-
ior of volatility. In financial markets, not only is volatilitynot constant, but it also has some
unexpected characteristics. One of these anomalies is thesmile effects.24 Volatility has, also, a
term structure.

The second case is when interest rates are stochastic, and the underlying asset is an interest-
rate-related instrument. Here, the deviation from the Black-Scholes world, again, leads to sig-
nificant changes.

7.1. Dealing with Option Books

This chapter discussedgamma, delta, andvegarisks for single option positions. Yet, market
makers do not deal with single options. They have option books and they try to manage the
delta, gamma, andvegarisks of portfolios of options. This complicates the hedging and risk
management significantly. The existence of exotic options compounds these difficulties.

First of all, option books consist of options on different, possibly correlated, assets. Second,
implied volatility may be different across strikes and expiration dates, and a straightforward
application ofdelta, gamma, andvegaconcepts to the portfolio may become impossible. Third,
while for single optionsdelta, vega, andgammahave known shapes and dynamics, for portfolios
of options, the shapes ofdelta, gamma, andvegaare more complex and their movement over
time may be more difficult to track.

7.2. Futures as Underlying

This chapter has discussed options written on cash instruments. How would we analyze options
that are written on a futures or forward contract? There are two steps in designing option

24 Smile is the change in implied volatility as strike price changes. It will be dealt within Chapter 15.
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contracts. First, a futures or a forward contract is introduced on the cash instrument, and second,
an option is written on the futures. The holder of the option has the right to buy one or more
futures contracts.

Why would anyone write an option on futures (forwards), instead of writing it on the cash
instrument directly?

In fact, the advantages of such contracts are many, and the fact that option contracts written
on futures and forwards are the most liquid is not a coincidence. First of all, if one were to
buy and sell the underlying in order to hedge the option positions, the futures contracts are
more convenient. They are more liquid, and they do not require upfront cash payments. Second,
hedging with cash instruments could imply, for example, selling or buying thousands of barrels
of oil. Where would a trader put so much oil, and where would he get it? Worse, dynamic hedging
requires adjusting such positions continuously. It would be very inconvenient to buy and sell a
cash underlying. Long and short positions in futures do not result in delivery until the expiration
date. Hence, the trader can constantly adjust his or her position without having to store barrels of
oil at each rebalancing of the hedge. Futures are also more liquid and the associated transactions
costs and counterparty risks are much smaller.

Thus, the choice of futures and forwards as the underlying instead of cash instruments is,
in fact, clever contract design. But we must remember that futures come with daily marking to
market. Forward contracts, on the other hand, may not require any marking to market until the
expiration date.

7.2.1. Delivery Mismatch

Note the possibility of a mismatch. The option may result in the delivery of a futures contract
at timeT , but the futures contract may not expire at that same time. Instead, it may expire at
a timeT + Δ and may result in the delivery of the cash commodity. Such timing mismatches
introduce new risks.

8. Conclusion: What Is an Option?

This chapter has shown that an option is essentially a volatility instrument. The critical parameter
is how much the underlying risk oscillates within a given interval. We also saw that there are
many other risks to manage. The implied volatility parameter,σ, may change, interest rates
may fluctuate, and option sensitivities may behave unexpectedly. These risks are not “costs” of
maintaining the position perhaps, but they affect pricing and play an important role in option
trading.

Suggested Reading

Most textbooks approach options as directional instruments. There are, however, some nontech-
nical sources that treat options as volatility instruments directly. The first to come to mind is
Natenberg(1994). Another such approach is inConolly (1999). A reader who prefers a techni-
cal approach has to consider more abstract treatments such asMusielaandRutkowski(1998).
Several texts discuss Black-Scholes theory. The one that we recommend isDuffie (2001). Read-
ers should look atWilmott (2000) for the technical details. For the useful combination of options
analysis with Mathematica, the reader can consultStojanovic(2003). Risk publications have
several books that collect articles that have the same approach used in this chapter.Risk (1992)
is a good example. There, the reader will find a comprehensive discussion of the Black-Scholes
formula. Examples on Greeks were based on the terminology used in Derivatives Week.
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APPENDIX 8-1

In this appendix, we derive formulas fordeltaandgamma. The relatively lengthy derivation is
for delta.

Derivation of Delta

The Black-Scholes formula for a plain vanilla European call expirationT , strike,K, is given
by

C(St, t) = St

∫ log St
K

+(r+ 1
2 σ2)(T −t)

σ
√

T −t

−∞

1√
2π

e− 1
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du − e−r(T−t)K

∫ log St
K

+(r− 1
2 σ2)(T −t)

σ
√

T −t

−∞
(102)

1√
2π

e− 1
2 u2

du

Rearrange and letxt = St

Ke−r(T −t) , to get

C(xt, t) = Ke−r(T−t)

[
xt
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Now differentiate with respect toxt:

dC(xt, t)
dxt
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Now we show that the last two terms in this expression sum to zero and that

1
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To see this, on the right-hand side, use the substitution:

1
xt

= e− log xt (109)

and then rearrange the exponent in the exponential function.
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Thus, we are left with

∂C(xt, t)
∂xt
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Now use the chain rule and obtain
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∂St

=

⎡
⎣∫ log xt+

1
2 σ2(T −t)

σ
√

T −t

−∞

1√
2π

e− 1
2 u2

du

⎤
⎦ (111)

= N(d1) (112)

Derivation of Gamma

Oncedeltaof a European call is obtained, thegammawill be the derivative of thedelta. This
gives
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with xt = St

Ke−r(T −t)
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APPENDIX 8-2

In this appendix we review some basic concepts from stochastic calculus. This brief review can
be used as a reference point for some of the concepts utilized in later chapters. Øksendal (2003)
is a good source that provides an introductory discussion on stochastic calculus. Heuristics can
be found in Neftci (2000).

Stochastic Differential Equations

A Stochastic Differential Equation (SDE), driven by a Wiener processWt is written as,

dSt = a(St, t)dt + b(St, t)dWt t ∈ [0, ∞) (114)

This equation describes the dynamics ofSt over time. TheWiener processWt has increments
ΔWt that are normally distributed with mean zero and varianceΔ, where theΔ is a small time
interval. These increments are uncorrelated over time. As a result, the future increments of a
Wiener process are unpredictable given the information at timet, theIt.

Thea(St, t) and theb(St, t) are known as thedrift and thediffusionparameters. The drift
parameter modelsexpectedchanges inSt. The diffusion component models the correspond-
ing volatility. When unpredictable movements occur as jumps, this will be referred as ajump
component.

A jump component would require adding terms such asλ(St, t)dJt to the right-hand side
of the SDE shown above. Otherwise theSt will be known as adiffusion process. With a jump
component it becomes ajump-diffusion process.

Examples

The simplest Stochastic Differential Equation is the one where the drift and diffusion coefficients
are independent of the information received over time:

dSt = μdt + σdWt t ∈ [0, ∞) (115)

Here, theWt is a standard Wiener process with variancet. In this SDE, the coefficientsμ and
σ do not have time subscriptst, as time passes, they do not change.

The standard SDE used to model underlying asset prices is thegeometric process. It is the
model assumed in the Black and Scholes world:

dSt = μStdt + σStdWt t ∈ [0, ∞) (116)

This model implies that drift and the diffusion parameters change proportionally withSt.
An SDE that has been found useful in modelling interest rates is themean revertingmodel:

dSt = λ(μ − St)dt + σStdWt t ∈ [0, ∞) (117)

According to this, asSt falls below a “long-run mean”μ, the term(μ − St) will become
positive, which makesdSt more likely to be positive, hence,St will revert back to the meanμ.

Ito’s Lemma

Supposef(St) is a function of arandomprocessSt having the dynamics:

dSt = a(St, t)dt + b(St, t)dWt t ∈ [0, ∞) (118)
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We want to expandf(St) around a known value ofSt, sayS0 using Taylor series expansions.
The expansion will yield:

f(St) = f(S0) + fs(S0)[St − S0] +
1
2
fss(S0)[St − S0]2 + R(St, S0) (119)

where,R(St, S0) represents all the remaining terms of the Taylor series expansion.
First note thatf(St) can be rewritten as,f(S0 + ΔSt), if we defineΔSt as:

ΔSt = St − S0 (120)

Then, the Taylor series approximation will have the form:

f(S0 + ΔSt) − f(S0) ∼= fsΔSt +
1
2
fssΔS2

t (121)

TheΔSt is a “small” change in the random variableSt. In approximating the right-hand side,
wekeepthe termfsΔSt.

Consider the second term12fss(ΔSt)2. If the St is deterministic, one can say that the term
(ΔSt)2 is small. This could be justified by keeping the size ofΔSt nonnegligible, yet small
enough that its square(ΔSt)2 is negligible. However, here, changes inSt will be random.
Suppose these changes have zero mean. Then the variance is,

0 < E [ΔSt]
2 ∼= b(St, t)2Δ (122)

This equality means that as long asSt is random, the right-hand side of (121) must keep the
second order term in any type of Taylor series approximation.

Moving to infinitesimal timedt, this gives Ito’s Lemma, which is the stochastic version of
the Chain rule,

df(St) = fsdSt +
1
2
fssb(St, t)2dt (123)

This equation can be regarded as the dynamics of the processf(St), which is driven bySt. The
dSt term in the above equation can be substituted out using theSt dynamics.

Girsanov Theorem

Girsanov Theorem provides the general framework for transforming one probability measure
into another “equivalent” measure. It is an abstract result that plays a very important role in
pricing.

In heuristic terms, this theorem says the following. If we are given a Wiener processWt,
then, we can multiply the probability distribution of this process by a special functionξt that
depends on timet, and on the information available at timet, theIt. This way we can obtain a
newWiener process̃Wt with probability distributionP̃ . The two processes will relate to each
other through the relation:

dW̃t = dWt − Xtdt (124)

That is to say,W̃t is obtained by subtracting anIt-dependent termXt, from Wt.
GirsanovTheorem is often used in the following way: (1) we have an expectation to calculate,

(2) we transform the original probability measure, such that expectation becomes easier to
calculate, and (3) we calculate the expectation under the new probability.
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Exercises

1. Consider the following comment dealing with options written on the euro-dollar exchange
rate:

Some traders, thinking that implied volatility was too high entered new trades.
One example was to sell one-year in-the-money euro Puts with strikes around
USD1.10 and buy one-year at-the-money euro Puts. If the euro is above
USD1.10 at maturity, the trader makes the difference in the premiums. The
trades were put on across the curve. (Based on an article in Derivatives Week).

(a) Draw the profit/loss diagrams of this position at expiration for each option
separately.

(b) What would be the gross payoff at expiry?
(c) What would be the net payoff at expiry?
(d) Why would the traders buy “volatility” given that they buy and sell options?

Don’t these two cancel each other in terms of volatility exposure?

2. Consider the following quote:

Implied U.S. dollar/New Zeland dollar volatility fell to 10.1%/11.1% on
Tuesday. Traders bought at-the-money options at the beginning of the week,
ahead of the Federal Reserve interest-rate cut. They anticipated a rate cut
which would increase short-term volatility. They wanted to be long gamma.
Trades were typically for one-week maturities, in average notionals of USD10-
20 million. (Based on an article in Derivatives Week).

(a) Explain why traders wanted to be longgammawhen the volatility was expected
to increase.

(b) Show your argument using numerical values for Greeks and the data given in
the reading.

(c) How much money would the trader lose under these circumstances? Calculate
approximately, using the data supplied in the reading. Assume that the position
was originally for USD30 million.

3. Consider the following episode:

EUR/USD one-month implied volatility sank by 2.7% to 10% Wednesday as
traders hedged this euro exposure against the greenback, as the euro plunged
to historic lows on the spot market. After the European Central Bank raised
interest rates by 25 basis points, the euro fell against leading to a strong demand
for euro Puts. The euro touched a low of USD0.931 Wednesday. (Based on an
article in Derivatives Week).

(a) In the euro/dollar market, traders rushed to stock up ongammaby buying
short-dated euro puts struck below USD0.88 to hedge against the possibility
that the interest rates rise. Under normal circumstances, what would happen to
the currency?

(b) When the euro failed to respond and fell against major currencies, why would
the traders then rush to buy euro puts? Explain using payoff diagrams.

(c) Would a trader “stock up”gammaif euro-triggered barrier options?
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4. You are given the following table concerning the price of a put option satisfying all
Black-Scholes assumptions. The strike is 20 and the volatility is 30%. The risk-free rate
is 2.5%.

Option price Underlying asset price

10 10
5 15
1.3 20
.25 25
.14 30

The option expires in 100 days. Assume (for convenience), that, for every month the
option loses approximately one-third of its value.

(a) How can you approximate the optiondelta? Calculatethreeapproximations for
thedelta in the previous case.

(b) Suppose you bought the option when the underlying was at20 using borrowed
funds. You have hedged this position in a standard fashion. How much do you
gain or lose in four equal time periods if you observe the following price
sequence in that order:

10, 25, 25, 30 (125)

(c) Suppose now that the underlying price follows the new trajectory given by

10, 30, 10, 30 (126)

How much do you gain or lose until expiration?
(d) Explain the difference between gains and losses.

5. Search the Internet for the following questions.

(a) Which sensitivities do the Greeks, volga and Vanna represent?
(b) Why are they relevant forvegahedging?


